
Petri Murto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1253328/publications.pdf Version: 2024-02-01

Ρετρι Μιιρτο

#	Article	IF	CITATIONS
1	Shape-controlled fabrication of cost-effective, scalable and anti-biofouling hydrogel foams for solar-powered clean water production. Chemical Engineering Journal, 2022, 431, 134144.	12.7	40
2	A porphyrin pentamer as a bright emitter for NIR OLEDs. Journal of Materials Chemistry C, 2022, 10, 5929-5933.	5.5	6
3	Hygroscopic photothermal beads from marine polysaccharides: demonstration of efficient atmospheric water production, indoor humidity control and photovoltaic panel cooling. Journal of Materials Chemistry A, 2022, 10, 8556-8567.	10.3	20
4	Electro-optical π-radicals: design advances, applications and future perspectives. Journal of Materials Chemistry C, 2022, 10, 7368-7403.	5.5	21
5	Design of Doubleâ€Network Clickâ€Gels for Selfâ€Contained Underwater Adhesion and Energyâ€Wise Applications in Floating Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	13
6	Fabrication of Monopile Polymer Foams via Rotating Gas Foaming: Hybrid Applications in Solarâ€Powered Interfacial Evaporation and Water Remediation. Solar Rrl, 2022, 6, .	5.8	14
7	Solarâ€Driven Interfacial Evaporation and Selfâ€Powered Water Wave Detection Based on an Allâ€Cellulose Monolithic Design. Advanced Functional Materials, 2021, 31, 2008681.	14.9	150
8	Semitransparent polymer solar cells floating on water: selected transmission windows and active control of algal growth. Journal of Materials Chemistry C, 2021, 9, 13132-13143.	5.5	8
9	Nearâ€Infrared Emission by Tuned Aggregation of a Porphyrin Compound in a Host–Guest Lightâ€Emitting Electrochemical Cell. Advanced Optical Materials, 2021, 9, 2001701.	7.3	11
10	Design of monolithic closed-cell polymer foams <i>via</i> controlled gas-foaming for high-performance solar-driven interfacial evaporation. Journal of Materials Chemistry A, 2021, 9, 9692-9705.	10.3	77
11	Synergistic Engineering of Substituents and Backbones on Donor Polymers: Toward Terpolymer Design of High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 23993-24004.	8.0	22
12	Selfâ€Repairing and Damageâ€Tolerant Hydrogels for Efficient Solarâ€Powered Water Purification and Desalination. Advanced Functional Materials, 2021, 31, 2104464.	14.9	93
13	Synergistic solar-powered water-electricity generation <i>via</i> rational integration of semitransparent photovoltaics and interfacial steam generators. Journal of Materials Chemistry A, 2021, 9, 21197-21208.	10.3	28
14	Expanded Multiband Super-Nyquist CAP Modulation for Highly Bandlimited Organic Visible Light Communications. IEEE Systems Journal, 2020, 14, 2544-2550.	4.6	7
15	High-performance semitransparent polymer solar cells floating on water: Rational analysis of power generation, water evaporation and algal growth. Nano Energy, 2020, 77, 105111.	16.0	43
16	Design of self-righting steam generators for solar-driven interfacial evaporation and self-powered water wave detection. Journal of Materials Chemistry A, 2020, 8, 24664-24674.	10.3	36
17	Low-gap zinc porphyrin as an efficient dopant for photomultiplication type photodetectors. Chemical Communications, 2020, 56, 12769-12772.	4.1	11
18	Highly Stable Indacenodithieno[3,2- <i>b</i>]thiophene-Based Donor–Acceptor Copolymers for Hybrid Electrochromic and Energy Storage Applications. Macromolecules, 2020, 53, 11106-11119.	4.8	31

Petri Murto

#	Article	IF	CITATIONS
19	Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED Based Visible Light Communications. , 2019, , .		5
20	Star-Shaped Diketopyrrolopyrrole–Zinc Porphyrin that Delivers 900 nm Emission in Light-Emitting Electrochemical Cells. Chemistry of Materials, 2019, 31, 9721-9728.	6.7	34
21	On the Design of Host–Guest Lightâ€Emitting Electrochemical Cells: Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission?. Advanced Optical Materials, 2019, 7, 1900451.	7.3	19
22	Combining Benzotriazole and Benzodithiophene Host Units in Host–Guest Polymers for Efficient and Stable Nearâ€Infrared Emission from Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2019, 7, 1900280.	7.3	23
23	Broad spectrum absorption and low-voltage electrochromic operation from indacenodithieno[3,2- <i>b</i>]thiophene-based copolymers. Polymer Chemistry, 2019, 10, 2004-2014.	3.9	15
24	Hybrid Super-Nyquist CAP Modulation based VLC with Low Bandwidth Polymer LEDs. , 2019, , .		3
25	Incorporation of Designed Donor–Acceptor–Donor Segments in a Host Polymer for Strong Near-Infrared Emission from a Large-Area Light-Emitting Electrochemical Cell. ACS Applied Energy Materials, 2018, 1, 1753-1761.	5.1	23
26	High Performance All-Polymer Photodetector Comprising a Donor–Acceptor–Acceptor Structured Indacenodithiophene–Bithieno[3,4- <i>c</i>]Pyrroletetrone Copolymer. ACS Macro Letters, 2018, 7, 395-400.	4.8	43
27	High-Performance Organic Photodetectors from a High-Bandgap Indacenodithiophene-Based ï€-Conjugated Donor–Acceptor Polymer. ACS Applied Materials & Interfaces, 2018, 10, 12937-12946.	8.0	42
28	Open-Circuit Voltage Modulations on All-Polymer Solar Cells by Side Chain Engineering on 4,8-Di(thiophen-2-yl)benzo[1,2- <i>b</i> :4,5- <i>b</i> à€²]dithiophene-Based Donor Polymers. ACS Applied Energy Materials, 2018, 1, 2918-2926.	5.1	10
29	Efficient Nearâ€Infrared Electroluminescence at 840 nm with "Metalâ€Free―Smallâ€Molecule:Polymer Blends. Advanced Materials, 2018, 30, e1706584.	21.0	49
30	Intense and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells Comprising a Metal-Free Indacenodithieno[3,2- <i>b</i>]thiophene-Based Copolymer as the Single Emitter. Chemistry of Materials, 2017, 29, 7750-7759.	6.7	49
31	Triazolobenzothiadiazoleâ€Based Copolymers for Polymer Lightâ€Emitting Diodes: Pure Nearâ€Infrared Emission via Optimized Energy and Charge Transfer. Advanced Optical Materials, 2016, 4, 2068-2076.	7.3	48