Débora Barbosa Vendramini-Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1253069/publications.pdf Version: 2024-02-01

Débora Barbosa

#	Article	IF	CITATIONS
1	Molecular Link Mechanisms between Inflammation and Cancer. Current Pharmaceutical Design, 2012, 18, 3831-3852.	0.9	344
2	Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chemistry, 2017, 232, 295-305.	4.2	118
3	Netrin G1 Promotes Pancreatic Tumorigenesis through Cancer-Associated Fibroblast–Driven Nutritional Support and Immunosuppression. Cancer Discovery, 2021, 11, 446-479.	7.7	97
4	Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their inÂvitro and inÂvivo antitumor activities. European Journal of Medicinal Chemistry, 2015, 104, 148-156.	2.6	63
5	Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. European Journal of Medicinal Chemistry, 2017, 136, 305-314.	2.6	62
6	Effect of goniothalamin on the development of Ehrlich solid tumor in mice. Bioorganic and Medicinal Chemistry, 2010, 18, 6742-6747.	1.4	57
7	Synthesis of methoxylated goniothalamin, aza-goniothalamin and Î ³ -pyrones and their in vitro evaluation against human cancer cells. Bioorganic and Medicinal Chemistry, 2012, 20, 3635-3651.	1.4	38
8	Expression patterns of sirtuin 1-AMPK-autophagy pathway in chronic colitis and inflammation-associated colon neoplasia in IL-10-deficient mice. International Immunopharmacology, 2016, 35, 248-256.	1.7	37
9	Synthesis and evaluation of novel hybrids β -carboline-4-thiazolidinones as potential antitumor and antiviral agents. European Journal of Medicinal Chemistry, 2016, 124, 1093-1104.	2.6	36
10	The antinociceptive activity of harmicine on chemical-induced neurogenic and inflammatory pain models in mice. Pharmacology Biochemistry and Behavior, 2012, 102, 133-138.	1.3	34
11	Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. Food Research International, 2020, 133, 109168.	2.9	32
12	Design and Synthesis of Nâ€Acylated Azaâ€Goniothalamin Derivatives and Evaluation of Their in vitro and in vivo Antitumor Activity. ChemMedChem, 2014, 9, 2725-2743.	1.6	29
13	Antiproliferative activity of synthetic fatty acid amides from renewable resources. Bioorganic and Medicinal Chemistry, 2015, 23, 340-347.	1.4	29
14	Anti-inflammatory therapies in TRAMP mice: delay in PCa progression. Endocrine-Related Cancer, 2016, 23, 235-250.	1.6	26
15	In Vitro, In Vivo and In Silico Analysis of the Anticancer and Estrogen-like Activity of Guava Leaf Extracts. Current Medicinal Chemistry, 2014, 21, 2322-2330.	1.2	25
16	Anticancer and Anti-Inflammatory Activities of a Standardized Dichloromethane Extract from <i>Piper umbellatum</i> L. Leaves. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-8.	0.5	25
17	Anti-inflammatory and antinociceptive effects of racemic goniothalamin, a styryl lactone. Life Sciences, 2015, 139, 83-90.	2.0	23
18	Diastereoselective Synthesis of Biologically Active Cyclopenta[<i>b</i>]indoles. Journal of Organic Chemistry, 2016, 81, 6626-6639.	1.7	23

DéBORA BARBOSA

#	Article	IF	CITATIONS
19	Anti-inflammatory natural product goniothalamin reduces colitis-associated and sporadic colorectal tumorigenesis. Carcinogenesis, 2017, 38, 51-63.	1.3	22
20	Design, synthesis and in vitro evaluation against human cancer cells of 5-methyl-5-styryl-2,5-dihydrofuran-2-ones, a new series of goniothalamin analogues. Bioorganic and Medicinal Chemistry, 2013, 21, 5107-5117.	1.4	20
21	Gastroprotective effects of goniothalamin against ethanol and indomethacin-induced gastric lesions in rats: Role of prostaglandins, nitric oxide and sulfhydryl compounds. Chemico-Biological Interactions, 2014, 224, 206-212.	1.7	20
22	Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line. Toxicology and Applied Pharmacology, 2016, 300, 1-12.	1.3	20
23	Antiproliferative Activity of Three Methoxylated Flavonoids Isolated from <i>Zeyheria montana</i> Mart. (Bignoniaceae) Leaves. Phytotherapy Research, 2011, 25, 1447-1450.	2.8	18
24	Antiproliferative Flavanoid Dimers Isolated from Brazilian Red Propolis. Journal of Natural Products, 2020, 83, 1784-1793.	1.5	18
25	Different cell death responses induced by eupomatenoid-5 in MCF-7 and 786-0 tumor cell lines. Toxicology in Vitro, 2015, 29, 1026-1033.	1.1	17
26	Two New Hydronaphthoquinones from <i>Sinningia aggregata</i> (Gesneriaceae) and Cytotoxic Activity of Aggregatin D. Chemistry and Biodiversity, 2015, 12, 148-152.	1.0	16
27	Pharmacological characterization of Solanum cernuum Vell.: 31-norcycloartanones with analgesic and anti-inflammatory properties. Inflammopharmacology, 2013, 22, 179-85.	1.9	13
28	<i>In vitro</i> antiproliferative activity of uncommon xanthones from branches of <i>Garcinia achachairu</i> . Pharmaceutical Biology, 2016, 54, 1697-1704.	1.3	13
29	Antiproliferative Effect of Synadenium grantii Hook f. stems (Euphorbiaceae) and a Rare Phorbol Diterpene Ester. International Journal of Toxicology, 2016, 35, 666-671.	0.6	11
30	Steroidal hormone and morphological responses in the prostate anterior lobe in different cancer grades after Celecoxib and Goniothalamin treatments in TRAMP mice. Cell Biology International, 2018, 42, 1006-1020.	1.4	11
31	Oncibauerins A and B, new flavanones from Oncidium baueri (Orchidaceae). Phytochemistry Letters, 2014, 9, 141-148.	0.6	10
32	(â^')â€Tarchonanthuslactone: Design of New Analogues, Evaluation of their Antiproliferative Activity on Cancer Cell Lines, and Preliminary Mechanistic Studies. ChemMedChem, 2015, 10, 1687-1699.	1.6	10
33	Uncommon Trimethoxylated Flavonol Obtained from <i>Rubus rosaefolius</i> Leaves and Its Antiproliferative Activity. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-6.	0.5	10
34	Goniothalamin and Celecoxib Effects During Aging: Targeting Proâ€Inflammatory Mediators in Chemoprevention of Prostatic Disorders. Prostate, 2017, 77, 838-848.	1.2	10
35	Phenolic composition, antiproliferative and antiulcerogenic activities of a polyphenolâ€rich purified extract from açai (<i>Euterpe oleracea</i>) fruits. International Journal of Food Science and Technology, 2021, 56, 6626-6634.	1.3	8
36	Antiproliferative effect of extracts and pyranonaphthoquinones obtained fromCipura paludosabulbs. Pharmaceutical Biology, 2016, 54, 1022-1026.	1.3	7

DéBORA BARBOSA

#	Article	IF	CITATIONS
37	Chemical composition and antiproliferative activity of Croton campestris A.StHil. essential oil. Natural Product Research, 2019, 33, 580-583.	1.0	5
38	Antiproliferative Activity of Two Unusual Dimeric Flavonoids, Brachydin E and Brachydin F, Isolated from Fridericia platyphylla (Cham.) L.G.Lohmann: In Vitro and Molecular Docking Evaluation. BioMed Research International, 2022, 2022, 1-12.	0.9	2
39	Abstract 2038: NG1/NGL1 engagement supports PDAC development via CAF to PDAC nutrition and CAF-regulated immunosuppression. , 2019, , .		1
40	Abstract 3186: Role of Interleukin 1 signaling in tumor elicited inflammation and colon cancer. , 2015, ,		0