
Jorge L Andrade-Piedra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Where to Invest Project Efforts for Greater Benefit: A Framework for Management Performance Mapping with Examples for Potato Seed Health. Phytopathology, 2022, 112, 1431-1443.	2.2	11
2	Screening South American Potato Landraces and Potato Wild Relatives for Novel Sources of Late Blight Resistance. Plant Disease, 2022, 106, 1845-1856.	1.4	7
3	Toolbox for Working with Root, Tuber, and Banana Seed Systems. , 2022, , 319-352.		4
4	Variety and on-farm seed management practices affect potato seed degeneration in the tropical highlands of Ecuador. Agricultural Systems, 2022, 198, 103387.	6.1	11
5	An integrated seed health strategy and phytosanitary risk assessment: Potato in the Republic of Georgia. Agricultural Systems, 2021, 191, 103144.	6.1	16
6	The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems. Potato Research, 2021, 64, 681-720.	2.7	88
7	Potato Seed Systems. , 2020, , 431-447.		16
8	Global Cropland Connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests. BioScience, 2020, 70, 744-758.	4.9	30
9	BLIGHTSIM: A New Potato Late Blight Model Simulating the Response of Phytophthora infestans to Diurnal Temperature and Humidity Fluctuations in Relation to Climate Change. Pathogens, 2020, 9, 659.	2.8	14
10	Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 2020, 137, 105241.	2.1	4
11	A simple, hand-held decision support designed tool to help resource-poor farmers improve potato late blight management. Crop Protection, 2020, 134, 105186.	2.1	13
12	Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Security, 2019, 11, 23-42.	5.3	68
13	Characterization of tuber blightâ€suppressive soils from four provinces of the Ecuadorean Andes. Plant Pathology, 2018, 67, 1562-1573.	2.4	Ο
14	Understanding root, tuber, and banana seed systems and coordination breakdown: a multi-stakeholder framework. Journal of Crop Improvement, 2018, 32, 599-621.	1.7	37
15	Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agriculture, 2018, 3, 273-283.	1.7	38
16	A Risk Assessment Framework for Seed Degeneration: Informing an Integrated Seed Health Strategy for Vegetatively Propagated Crops. Phytopathology, 2017, 107, 1123-1135.	2.2	53
17	Epidemic Network Analysis for Mitigation of Invasive Pathogens in Seed Systems: Potato in Ecuador. Phytopathology, 2017, 107, 1209-1218.	2.2	50
18	Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 2016, 65, 3-16.	2.4	144

#	Article	IF	CITATIONS
19	Technical and Economic Analysis of Aeroponics and other Systems for Potato Mini-Tuber Production in Latin America. American Journal of Potato Research, 2013, 90, 357-368.	0.9	39
20	Use of Phosphonate to Manage Foliar Potato Late Blight in Developing Countries. Plant Disease, 2012, 96, 1008-1015.	1.4	34
21	Linking Smallholders to the New Agricultural Economy: The Case of the <i>Plataformas de ConcertaciÃ³n</i> in Ecuador. Journal of Development Studies, 2011, 47, 1545-1573.	2.1	41
22	Assessing the Adequacy of the Simulation Model LATEBLIGHT Under Nicaraguan Conditions. Plant Disease, 2011, 95, 839-846.	1.4	8
23	Knowledge management for pro-poor innovation: the Papa Andina case. Knowledge Management for Development Journal, 2011, 7, 65-83.	0.4	4
24	Multi-stakeholder platforms for linking small farmers to value chains: evidence from the Andes. International Journal of Agricultural Sustainability, 2011, 9, 423-433.	3.5	71
25	Comparison of two strategies for use of translaminar and contact fungicide in the control of potato late blight in the highland tropics of Ecuador. Crop Protection, 2008, 27, 1098-1104.	2.1	8
26	Preemergence Infection of Potato Sprouts by <i>Phytophthora infestans</i> in the Highland Tropics of Ecuador. Plant Disease, 2008, 92, 569-574.	1.4	13
27	Aggressiveness of Phytophthora infestans and phenotypic analysis of resistance in wild Petota accessions in Ecuador. Plant Pathology, 2007, 56, 549-561.	2.4	7
28	Simulation of Potato Late Blight in the Andes. I: Modification and Parameterization of the LATEBLIGHT Model. Phytopathology, 2005, 95, 1191-1199.	2.2	44
29	Qualification of a Plant Disease Simulation Model: Performance of the LATEBLIGHT Model Across a Broad Range of Environments. Phytopathology, 2005, 95, 1412-1422.	2.2	33
30	Simulation of Potato Late Blight in the Andes. II: Validation of the LATEBLIGHT Model. Phytopathology, 2005, 95, 1200-1208.	2.2	35
31	Quantifying the Rate of Release and Escape of Phytophthora infestans Sporangia from a Potato Canopy. Phytopathology, 2001, 91, 1189-1196.	2.2	82