Jorge L Andrade-Piedra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252862/publications.pdf

Version: 2024-02-01

31 papers

1,034 citations

16 h-index 29 g-index

38 all docs 38 docs citations

38 times ranked 787 citing authors

#	Article	IF	CITATIONS
1	Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 2016, 65, 3-16.	2.4	144
2	The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems. Potato Research, 2021, 64, 681-720.	2.7	88
3	Quantifying the Rate of Release and Escape of Phytophthora infestans Sporangia from a Potato Canopy. Phytopathology, 2001, 91, 1189-1196.	2.2	82
4	Multi-stakeholder platforms for linking small farmers to value chains: evidence from the Andes. International Journal of Agricultural Sustainability, 2011, 9, 423-433.	3.5	71
5	Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Security, 2019, 11, 23-42.	5. 3	68
6	A Risk Assessment Framework for Seed Degeneration: Informing an Integrated Seed Health Strategy for Vegetatively Propagated Crops. Phytopathology, 2017, 107, 1123-1135.	2.2	53
7	Epidemic Network Analysis for Mitigation of Invasive Pathogens in Seed Systems: Potato in Ecuador. Phytopathology, 2017, 107, 1209-1218.	2.2	50
8	Simulation of Potato Late Blight in the Andes. I: Modification and Parameterization of the LATEBLIGHT Model. Phytopathology, 2005, 95, 1191-1199.	2.2	44
9	Linking Smallholders to the New Agricultural Economy: The Case of the <i>Plataformas de Concertación</i> in Ecuador. Journal of Development Studies, 2011, 47, 1545-1573.	2.1	41
10	Technical and Economic Analysis of Aeroponics and other Systems for Potato Mini-Tuber Production in Latin America. American Journal of Potato Research, 2013, 90, 357-368.	0.9	39
11	Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agriculture, 2018, 3, 273-283.	1.7	38
12	Understanding root, tuber, and banana seed systems and coordination breakdown: a multi-stakeholder framework. Journal of Crop Improvement, 2018, 32, 599-621.	1.7	37
13	Simulation of Potato Late Blight in the Andes. II: Validation of the LATEBLIGHT Model. Phytopathology, 2005, 95, 1200-1208.	2.2	35
14	Use of Phosphonate to Manage Foliar Potato Late Blight in Developing Countries. Plant Disease, 2012, 96, 1008-1015.	1.4	34
15	Qualification of a Plant Disease Simulation Model: Performance of the LATEBLIGHT Model Across a Broad Range of Environments. Phytopathology, 2005, 95, 1412-1422.	2.2	33
16	Global Cropland Connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests. BioScience, 2020, 70, 744-758.	4.9	30
17	Potato Seed Systems. , 2020, , 431-447.		16
18	An integrated seed health strategy and phytosanitary risk assessment: Potato in the Republic of Georgia. Agricultural Systems, 2021, 191, 103144.	6.1	16

#	Article	IF	CITATIONS
19	BLIGHTSIM: A New Potato Late Blight Model Simulating the Response of Phytophthora infestans to Diurnal Temperature and Humidity Fluctuations in Relation to Climate Change. Pathogens, 2020, 9, 659.	2.8	14
20	Preemergence Infection of Potato Sprouts by <i>Phytophthora infestans</i> in the Highland Tropics of Ecuador. Plant Disease, 2008, 92, 569-574.	1.4	13
21	A simple, hand-held decision support designed tool to help resource-poor farmers improve potato late blight management. Crop Protection, 2020, 134, 105186.	2.1	13
22	Where to Invest Project Efforts for Greater Benefit: A Framework for Management Performance Mapping with Examples for Potato Seed Health. Phytopathology, 2022, 112, 1431-1443.	2.2	11
23	Variety and on-farm seed management practices affect potato seed degeneration in the tropical highlands of Ecuador. Agricultural Systems, 2022, 198, 103387.	6.1	11
24	Comparison of two strategies for use of translaminar and contact fungicide in the control of potato late blight in the highland tropics of Ecuador. Crop Protection, 2008, 27, 1098-1104.	2.1	8
25	Assessing the Adequacy of the Simulation Model LATEBLIGHT Under Nicaraguan Conditions. Plant Disease, 2011, 95, 839-846.	1.4	8
26	Aggressiveness of Phytophthora infestans and phenotypic analysis of resistance in wild Petota accessions in Ecuador. Plant Pathology, 2007, 56, 549-561.	2.4	7
27	Screening South American Potato Landraces and Potato Wild Relatives for Novel Sources of Late Blight Resistance. Plant Disease, 2022, 106, 1845-1856.	1.4	7
28	Knowledge management for pro-poor innovation: the Papa Andina case. Knowledge Management for Development Journal, 2011, 7, 65-83.	0.4	4
29	Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 2020, 137, 105241.	2.1	4
30	Toolbox for Working with Root, Tuber, and Banana Seed Systems. , 2022, , 319-352.		4
31	Characterization of tuber blightâ€suppressive soils from four provinces of the Ecuadorean Andes. Plant Pathology, 2018, 67, 1562-1573.	2.4	O