Nelson Rowell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252805/publications.pdf Version: 2024-02-01

NELSON ROWELL

#	Article	IF	CITATIONS
1	Size matters: Steric hindrance of precursor molecules controlling the evolution of CdSe magic-size clusters and quantum dots. Nano Research, 2022, 15, 8564-8572.	5.8	2
2	Transformations Among Colloidal Semiconductor Magic-Size Clusters. Accounts of Chemical Research, 2021, 54, 776-786.	7.6	35
3	Transformation Pathway from CdSe Magic‣ize Clusters with Absorption Doublets at 373/393â€nm to Clusters at 434/460â€nm. Angewandte Chemie, 2021, 133, 20521-20528.	1.6	2
4	Transformation Pathway from CdSe Magicâ€6ize Clusters with Absorption Doublets at 373/393â€nm to Clusters at 434/460â€nm. Angewandte Chemie - International Edition, 2021, 60, 20358-20365.	7.2	15
5	Transformation of ZnS Precursor Compounds to Magic-Size Clusters Exhibiting Optical Absorption Peaking at 269 nm. Journal of Physical Chemistry Letters, 2020, 11, 75-82.	2.1	32
6	Evolution of CdTe Magic-Size Clusters with Single Absorption Doublet Assisted by Adding Small Molecules during Prenucleation. Journal of Physical Chemistry Letters, 2020, 11, 2230-2240.	2.1	21
7	Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 6399-6408.	2.1	4
8	Photoluminescent Colloidal Nanohelices Self-Assembled from CdSe Magic-Size Clusters via Nanoplatelets. Journal of Physical Chemistry Letters, 2019, 10, 2794-2801.	2.1	24
9	Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chemistry of Materials, 2018, 30, 1575-1584.	3.2	32
10	Precursor Selfâ€Assembly Identified as a General Pathway for Colloidal Semiconductor Magic‧ize Clusters. Advanced Science, 2018, 5, 1800632.	5.6	56
11	Effect of Small Molecule Additives in the Prenucleation Stage of Semiconductor CdSe Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 6356-6363.	2.1	22
12	Evolution of Two Types of CdTe Magic-Size Clusters from a Single Induction Period Sample. Journal of Physical Chemistry Letters, 2018, 9, 5288-5295.	2.1	46
13	Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. Journal of Physical Chemistry Letters, 2018, 9, 2818-2824.	2.1	57
14	Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nature Communications, 2018, 9, 2499.	5.8	79
15	Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 3660-3666.	2.1	62
16	Two-Step Nucleation of CdS Magic-Size Nanocluster MSC–311. Chemistry of Materials, 2017, 29, 5727-5735.	3.2	68
17	Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nature Communications, 2017, 8, 15467.	5.8	87