List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2021, 2, 198-209.	6.2	964
2	Too much of a good thing. Nature, 2011, 472, 159-161.	13.7	810
3	Food choices, health and environment: Effects of cutting Europe's meat and dairy intake. Global Environmental Change, 2014, 26, 196-205.	3.6	573
4	Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environmental Research Letters, 2015, 10, 115004.	2.2	332
5	Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Science of the Total Environment, 2019, 693, 133642.	3.9	245
6	Nitrogen footprints: past, present and future. Environmental Research Letters, 2014, 9, 115003.	2.2	222
7	Recycling of livestock manure in a whole-farm perspective. Livestock Science, 2007, 112, 180-191.	0.6	220

 $_{8}$ Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{205}^{50}$ 462 Td

9	The potential of future foods for sustainable and healthy diets. Nature Sustainability, 2018, 1, 782-789.	11.5	197
10	The European carbon balance. Part 2: croplands. Global Change Biology, 2010, 16, 1409-1428.	4.2	185
11	Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology, 2013, 19, 3-18.	4.2	183
12	Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model. Agriculture, Ecosystems and Environment, 2012, 149, 124-134.	2.5	178
13	Inventories of N ₂ O and NO emissions from European forest soils. Biogeosciences, 2005, 2, 353-375.	1.3	170
14	Nitrogen emissions along global livestock supply chains. Nature Food, 2020, 1, 437-446.	6.2	160
15	The European carbon balance. Part 4: integration of carbon and other traceâ€gas fluxes. Global Change Biology, 2010, 16, 1451-1469.	4.2	157
16	Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences, 2008, 5, 73-94.	1.3	153
17	Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy, 2016, 61, 213-223.	2.8	144
18	A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences, 2009, 6, 1059-1087.	1.3	138

#	Article	IF	CITATIONS
19	Lost water and nitrogen resources due to EU consumer food waste. Environmental Research Letters, 2015, 10, 084008.	2.2	135
20	Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environmental Pollution, 2011, 159, 3243-3253.	3.7	133
21	Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nature Climate Change, 2022, 12, 36-46.	8.1	133
22	The nitrogen footprint of food products in the European Union. Journal of Agricultural Science, 2014, 152, 20-33.	0.6	123
23	Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nature Climate Change, 2018, 8, 219-223.	8.1	122
24	Livestock and greenhouse gas emissions: The importance of getting the numbers right. Animal Feed Science and Technology, 2011, 166-167, 779-782.	1.1	116
25	Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environmental Research Letters, 2014, 9, 095002.	2.2	115
26	Nitrogen pollution policy beyond the farm. Nature Food, 2020, 1, 27-32.	6.2	111
27	Nitrogen and biofuels; an overview of the current state of knowledge. Nutrient Cycling in Agroecosystems, 2010, 86, 211-223.	1.1	105
28	Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environmental Pollution, 2011, 159, 3254-3268.	3.7	99
29	Major challenges of integrating agriculture into climate change mitigation policy frameworks. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 451-468.	1.0	98
30	A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops. Environmental Modelling and Software, 2012, 34, 51-66.	1.9	92
31	Modelling of land cover and agricultural change in Europe: Combining the CLUE and CAPRI-Spat approaches. Agriculture, Ecosystems and Environment, 2011, 142, 40-50.	2.5	76
32	Developing spatially stratified N2O emission factors for Europe. Environmental Pollution, 2011, 159, 3223-3232.	3.7	72
33	Integrating nitrogen fluxes at the European scale. , 0, , 345-376.		65
34	Shared Socio-economic Pathways for European agriculture and food systems: The Eur-Agri-SSPs. Global Environmental Change, 2020, 65, 102159.	3.6	58
35	The carbon balance of European croplands: A cross-site comparison of simulation models. Agriculture, Ecosystems and Environment, 2010, 139, 419-453.	2.5	55
36	Nitrogen flows from European regional watersheds to coastal marine waters. , 0, , 271-297.		54

#	Article	IF	CITATIONS
37	Assessing Sustainable Food and Nutrition Security of the EU Food System—An Integrated Approach. Sustainability, 2018, 10, 4271.	1.6	53
38	Co-benefits and trade-offs of climate change mitigation actions and the Sustainable Development Goals. Sustainable Production and Consumption, 2021, 26, 805-813.	5.7	53
39	Development of marginal emission factors for N losses from agricultural soils with the DNDC–CAPRI meta-model. Agriculture, Ecosystems and Environment, 2009, 133, 267-279.	2.5	46
40	How EU policies could reduce nutrient pollution in European inland and coastal waters. Global Environmental Change, 2021, 69, 102281.	3.6	46
41	A Sustainability Compass for policy navigation to sustainable food systems. Global Food Security, 2021, 29, 100546.	4.0	45
42	Soil Organic Carbon Thresholds and Nitrogen Management in Tropical Agroecosystems: Concepts and Prospects. Journal of Sustainable Development, 2013, 6, .	0.1	44
43	Toward a nitrogen footprint calculator for Tanzania. Environmental Research Letters, 2017, 12, 034016.	2.2	44
44	A new method to study simultaneous methane oxidation and methane production in soils. Global Biogeochemical Cycles, 1998, 12, 587-594.	1.9	43
45	Multicompartmental fate of persistent substances. Environmental Science and Pollution Research, 2007, 14, 153-165.	2.7	36
46	Spatial patterns of nitrogen runoff from Chinese paddy fields. Agriculture, Ecosystems and Environment, 2016, 231, 246-254.	2.5	36
47	Metrics, models and foresight for European sustainable food and nutrition security: The vision of the SUSFANS project. Agricultural Systems, 2018, 163, 45-57.	3.2	35
48	Nitrogen-neutrality: a step towards sustainability. Environmental Research Letters, 2014, 9, 115001.	2.2	34
49	Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961–2010. PLoS ONE, 2015, 10, e0127554.	1.1	34
50	Indicators for persistence and long-range transport potential as derived from multicompartment chemistry–transport modelling. Environmental Pollution, 2004, 128, 205-221.	3.7	33
51	Quantitative quality assessment of the greenhouse gas inventory for agriculture in Europe. Climatic Change, 2010, 103, 245-261.	1.7	33
52	The value of manure - Manure as co-product in life cycle assessment. Journal of Environmental Management, 2019, 241, 293-304.	3.8	33
53	European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data. Earth System Science Data, 2020, 12, 961-1001.	3.7	31
54	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	3.6	30

#	Article	IF	CITATIONS
55	Estimation of N2O fluxes at the regional scale: data, models, challenges. Current Opinion in Environmental Sustainability, 2011, 3, 328-338.	3.1	29
56	Sustainable food system policies need to address environmental pressures and impacts: The example of water use and water stress. Science of the Total Environment, 2020, 730, 139151.	3.9	29
57	Nitrogen in current European policies. , 2011, , 62-81.		27
58	A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmospheric Environment, 2018, 174, 237-240.	1.9	26
59	A protocol to develop Shared Socio-economic Pathways for European agriculture. Journal of Environmental Management, 2019, 252, 109701.	3.8	26
60	Estimating the gross nitrogen budget under soil nitrogen stock changes: A case study for Turkey. Agriculture, Ecosystems and Environment, 2015, 205, 48-56.	2.5	24
61	Paying the price for environmentally sustainable and healthy EU diets. Global Food Security, 2021, 28, 100437.	4.0	24
62	Geographical variation in terrestrial nitrogen budgets across Europe. , 2011, , 317-344.		23
63	Complementing the topsoil information of the Land Use/Land Cover Area Frame Survey (LUCAS) with modelled N2O emissions. PLoS ONE, 2017, 12, e0176111.	1.1	23
64	Integrated management for sustainable cropping systems: Looking beyond the greenhouse balance at the field scale. Global Change Biology, 2020, 26, 2584-2598.	4.2	23
65	A model for simulating the timelines of field operations at a European scale for use in complex dynamic models. Biogeosciences, 2012, 9, 4487-4496.	1.3	22
66	Measures to increase the nitrogen use efficiency of European agricultural production. Global Food Security, 2020, 26, 100381.	4.0	22
67	Demand-Side Food Policies for Public and Planetary Health. Sustainability, 2020, 12, 5924.	1.6	22
68	Implications of a food system approach for policy agenda-setting design. Global Food Security, 2021, 28, 100451.	4.0	22
69	Environmental change impacts on the C- and N-cycle of European forests: a model comparison study. Biogeosciences, 2013, 10, 1751-1773.	1.3	21
70	Forest conversion to poplar plantation in a Lombardy floodplain (Italy): effects on soil organic carbon stock. Biogeosciences, 2014, 11, 6483-6493.	1.3	20
71	Assessing the impact of Cross Compliance measures on nitrogen fluxes from European farmlands with DNDC-EUROPE. Environmental Pollution, 2011, 159, 3233-3242.	3.7	18
72	Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosystem Services, 2021, 51, 101344.	2.3	17

#	Article	IF	CITATIONS
73	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	3.7	16
74	A European perspective of innovations towards mitigation of nitrogen-related greenhouse gases. Current Opinion in Environmental Sustainability, 2014, 9-10, 37-45.	3.1	14
75	Interactions between reactive nitrogen and the Canadian landscape: A budget approach. Global Biogeochemical Cycles, 2014, 28, 1343-1357.	1.9	13
76	Greenhouse gas mitigation technologies in agriculture: Regional circumstances and interactions determine cost-effectiveness. Journal of Cleaner Production, 2021, 317, 128406.	4.6	13
77	Quantifying anthropogenic mobilization, flows (in product systems) and emissions of fixed nitrogen in process-based environmental life cycle assessment: rationale, methods and application to a life cycle inventory. International Journal of Life Cycle Assessment, 2014, 19, 166-173.	2.2	12
78	Development and testing of a European Unionâ€wide farmâ€level carbon calculator. Integrated Environmental Assessment and Management, 2015, 11, 404-416.	1.6	12
79	Formation of Nitrate and Sulfate in the Plume of Berlin (8 pp). Environmental Science and Pollution Research, 2005, 12, 213-220.	2.7	11
80	A grassland strategy for farming systems in Europe to mitigate GHG emissions—An integrated spatially differentiated modelling approach. Land Use Policy, 2016, 58, 318-334.	2.5	11
81	The role of nitrogen in achieving sustainable food systems for healthy diets. Global Food Security, 2021, 28, 100408.	4.0	11
82	The quality of European (EU-15) greenhouse gas inventories from agriculture. Journal of Integrative Environmental Sciences, 2005, 2, 177-192.	0.8	10
83	Technical summary. , 2011, , xxxv-lii.		10
84	Transformation of Aerosol Chemical Properties due to Transport Over a City. Journal of Atmospheric Chemistry, 2005, 51, 95-117.	1.4	9
85	Future scenarios of nitrogen in Europe. , 2011, , 551-569.		9
86	Multi-scale land-use disaggregation modelling: Concept and application to EU countries. Environmental Modelling and Software, 2016, 82, 183-217.	1.9	7
87	Unveiling the potential for an efficient use of nitrogen along the food supply and consumption chain. Global Food Security, 2020, 25, 100368.	4.0	7
88	Research meetings must be more sustainable. Nature Food, 2020, 1, 187-189.	6.2	7
89	Climate goals require food systems emission inventories. Nature Food, 2022, 3, 1-1.	6.2	6
90	The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Global Change Biology, 2009, 16, 2399-2399.	4.2	5

#	Article	IF	CITATIONS
91	Biomass for transport, heat and electricity: scientific challenges. Management of Environmental Quality, 2010, 21, 523-547.	2.2	4
92	Phosphorous stock changes in agricultural soils: a case study in Turkey. Nutrient Cycling in Agroecosystems, 2016, 105, 51-59.	1.1	4
93	Isotope fractionation in methane reactions studied by gas chromatography and liquid scintillation. Applied Radiation and Isotopes, 1997, 48, 501-509.	0.7	3
94	Assessing the Environmental Impact of Agriculture in Europe: The Indicator Database for European Agriculture. ACS Symposium Series, 2011, , 371-385.	0.5	3
95	Quantitative quality assessment of the greenhouse gas inventory for agriculture in Europe. , 2010, , 245-261.		3
96	Pre-informed Consumers on a Pre-adjusted Menu Had Smaller Nitrogen Footprints During the N2013 Conference, Kampala, Than Those on a Conventional Menu. , 2020, , 561-582.		1
97	The Food-Nitrogen-Environment nexus. European Journal of Public Health, 2016, 26, .	0.1	0
98	Nitrogen Footprints. , 2019, , 370-382.		0