Youqing Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252252/publications.pdf

Version: 2024-02-01

		10351	12233
309	21,089	72	133
papers	citations	h-index	g-index
334	334	334	20715
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
2	Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Advanced Materials, 2017, 29, 1606628.	11,1	771
3	Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nature Nanotechnology, 2019, 14, 799-809.	15.6	555
4	The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano, 2015, 9, 7195-7206.	7.3	552
5	Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. Journal of the American Chemical Society, 2010, 132, 4259-4265.	6.6	532
6	<i>In Vivo</i> and <i>iin Situ</i> Tracking Cancer Chemotherapy by Highly Photostable NIR Fluorescent Theranostic Prodrug. Journal of the American Chemical Society, 2014, 136, 3579-3588.	6.6	494
7	Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. Chemistry - A European Journal, 2006, 12, 4021-4026.	1.7	484
8	Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science, 2010, 35, 1128-1143.	11.8	430
9	Tumor Redox Heterogeneityâ€Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Advanced Materials, 2013, 25, 3670-3676.	11.1	355
10	Targeted Charge-Reversal Nanoparticles for Nuclear Drug Delivery. Angewandte Chemie - International Edition, 2007, 46, 4999-5002.	7.2	346
11	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
12	Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Advances in Colloid and Interface Science, 2020, 281, 102165.	7.0	332
13	Integration of Nanoassembly Functions for an Effective Delivery Cascade for Cancer Drugs. Advanced Materials, 2014, 26, 7615-7621.	11.1	317
14	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017, 115, 115-154.	6.6	307
15	Acid-Active Cell-Penetrating Peptides for in Vivo Tumor-Targeted Drug Delivery. Journal of the American Chemical Society, 2013, 135, 933-940.	6.6	303
16	Chargeâ€Reversal Drug Conjugate for Targeted Cancer Cell Nuclear Drug Delivery. Advanced Functional Materials, 2009, 19, 3580-3589.	7.8	291
17	Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery. Advanced Materials, 2016, 28, 1743-1752.	11.1	288
18	A Tumorâ€Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers. Advanced Materials, 2017, 29, 1702342.	11.1	278

#	Article	IF	CITATIONS
19	Enhanced CO2 Absorption of Poly(ionic liquid)s. Macromolecules, 2005, 38, 2037-2039.	2.2	275
20	Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. Journal of Membrane Science, 2007, 294, 178-185.	4.1	223
21	Challenges in design of translational nanocarriers. Journal of Controlled Release, 2012, 164, 156-169.	4.8	220
22	Catalyst separation in atom transfer radical polymerization. Progress in Polymer Science, 2004, 29, 1053-1078.	11.8	219
23	Poly(ionic liquid)s as new materials for CO2 absorption. Journal of Polymer Science Part A, 2005, 43, 5477-5489.	2.5	208
24	Flue-Gas Carbon Capture on Carbonaceous Sorbents:  Toward a Low-Cost Multifunctional Carbon Filter for "Green―Energy Producers. Industrial & Engineering Chemistry Research, 2008, 47, 3783-3794.	1.8	197
25	Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy. Advanced Materials, 2016, 28, 10613-10622.	11.1	189
26	The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery. ACS Nano, 2018, 12, 6179-6192.	7.3	186
27	A MnO ₂ Nanoparticle-Dotted Hydrogel Promotes Spinal Cord Repair <i>via</i> Regulating Reactive Oxygen Species Microenvironment and Synergizing with Mesenchymal Stem Cells. ACS Nano, 2019, 13, 14283-14293.	7.3	166
28	Anticancer Efficacies of Cisplatin-Releasing pH-Responsive Nanoparticles. Biomacromolecules, 2006, 7, 829-835.	2.6	159
29	Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials, 2013, 34, 5722-5735.	5.7	157
30	Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion–drug conjugates with cell-membrane affinity. Nature Biomedical Engineering, 2021, 5, 1019-1037.	11.6	148
31	Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer, 2005, 46, 12460-12467.	1.8	145
32	Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials, 2020, 240, 119902.	5.7	144
33	Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. Journal of Polymer Science Part A, 2005, 43, 1432-1443.	2.5	142
34	Highly Active Copper-Based Catalyst for Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2006, 128, 16277-16285.	6.6	139
35	Dual-channel NIR activatable theranostic prodrug for in vivo spatiotemporal tracking thiol-triggered chemotherapy. Chemical Science, 2016, 7, 4958-4965.	3.7	135
36	Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials. Macromolecules, 2008, 41, 493-496.	2.2	134

#	Article	IF	CITATIONS
37	Enzyme-Triggered Transcytosis of Dendrimer–Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS Nano, 2020, 14, 4890-4904.	7.3	134
38	Enhanced Stability of Coreâ^'Surface Cross-Linked Micelles Fabricated from Amphiphilic Brush Copolymers. Biomacromolecules, 2004, 5, 1736-1744.	2.6	133
39	NIR-II bioimaging of small organic molecule. Biomaterials, 2021, 271, 120717.	5.7	132
40	Synthesis and Characterization of Comb-Branched Polyelectrolytes. 1. Preparation of Cationic Macromonomer of 2-(Dimethylamino)ethyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 1628-1635.	2,2	130
41	Macromolecular MRI contrast agents: Structures, properties and applications. Progress in Polymer Science, 2013, 38, 462-502.	11.8	130
42	Simultaneous adsorption of heavy metals and organic dyes by \hat{l}^2 -Cyclodextrin-Chitosan based cross-linked adsorbent. Carbohydrate Polymers, 2021, 255, 117486.	5.1	130
43	Nuclear drug delivery for cancer chemotherapy. Journal of Controlled Release, 2011, 155, 227-236.	4.8	125
44	Viral Mimicking Ternary Polyplexes: A Reductionâ€Controlled Hierarchical Unpacking Vector for Gene Delivery. Advanced Materials, 2014, 26, 1534-1540.	11.1	119
45	Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. Journal of Polymer Science Part A, 2004, 42, 5794-5801.	2.5	117
46	Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Delivery, 2019, 26, 416-432.	2.5	117
47	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
48	lonic Liquid Catalyst for Biphasic Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules, 2005, 38, 5921-5928.	2.2	114
49	Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine. Macromolecules, 2000, 33, 5427-5431.	2.2	109
50	Conjugate of Pt(IV)â€"Histone Deacetylase Inhibitor as a Prodrug for Cancer Chemotherapy. Molecular Pharmaceutics, 2012, 9, 2793-2800.	2.3	108
51	Isothermal Carbon Dioxide Sorption in Poly(ionic liquid)s. Industrial & Engineering Chemistry Research, 2009, 48, 9113-9118.	1.8	107
52	Facile Synthesis of Polyester Dendrimers from Sequential Click Coupling of Asymmetrical Monomers. Journal of the American Chemical Society, 2009, 131, 14795-14803.	6.6	104
53	Self-assembling doxorubicinprodrug forming nanoparticles for cancer chemotherapy: synthesis and anticancer study in vitro and in vivo. Journal of Materials Chemistry B, 2013, 1, 284-292.	2.9	99
54	Novel SN38 conjugate-forming nanoparticles as anticancer prodrug: In vitro and in vivo studies. Journal of Controlled Release, 2013, 166, 147-158.	4.8	98

#	Article	IF	CITATIONS
55	Recent advances on protein separation and purification methods. Advances in Colloid and Interface Science, 2020, 284, 102254.	7.0	98
56	Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine, 2010, 5, 1205-1217.	1.7	97
57	CuBr2/N,N,N′,N′-Tetra[(2-pyridal)methyl]ethylenediamine/Tertiary Amine as a Highly Active and Versatile Catalyst for Atom-Transfer Radical Polymerization via Activator Generated by Electron Transfer. Macromolecular Rapid Communications, 2006, 27, 1127-1131.	2.0	90
58	Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: <i>in vitro</i> and <i>in vivo</i> effects. Nanomedicine, 2010, 5, 855-865.	1.7	89
59	Active Transportation of Liposome Enhances Tumor Accumulation, Penetration, and Therapeutic Efficacy. Small, 2020, 16, e2004172.	5.2	89
60	Molecularly Precise Dendrimer–Drug Conjugates with Tunable Drug Release for Cancer Therapy. Angewandte Chemie - International Edition, 2014, 53, 10949-10955.	7.2	88
61	Magnetic Nanoparticle Supported Catalyst for Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 6399-6405.	2.2	87
62	Platinum (IV)-coordinate polymers as intracellular reduction-responsive backbone-type conjugates for cancer drug delivery. Biomaterials, 2011, 32, 9136-9143.	5.7	87
63	Synthesis and characterization of highly random copolymer of $\hat{l}\mu$ -caprolactone and D,L-lactide using rare earth catalyst. Journal of Polymer Science Part A, 1996, 34, 1799-1805.	2.5	86
64	Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Molecular Therapy, 2016, 24, 364-374.	3.7	86
65	Intracellularly Disintegratable Polysulfoniums for Efficient Gene Delivery. Advanced Functional Materials, 2017, 27, 1606826.	7.8	85
66	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
67	Degradable Poly(\hat{l}^2 -amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 192-201.	1.7	82
68	Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy. Small, 2016, 12, 5108-5119.	5.2	82
69	Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111682.	1.7	82
70	Constructing NIR silica–cyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large Stokes shift. Chemical Science, 2013, 4, 1221.	3.7	76
71	Versatile Initiators for Macromonomer Syntheses of Acrylates, Methacrylates, and Styrene by Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 5399-5404.	2.2	7 5
72	Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nature Communications, 2021, 12, 2425.	5.8	75

#	Article	IF	CITATIONS
73	A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nature Biomedical Engineering, 2017, $1,745-757$.	11.6	74
74	Effect of Ligand Spacer on Silica Gel Supported Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules, 2001, 34, 5812-5818.	2.2	73
75	Amphiphilic drugs as surfactants to fabricate excipient-free stable nanodispersions of hydrophobic drugs for cancer chemotherapy. Journal of Controlled Release, 2015, 220, 175-179.	4.8	7 3
76	Recent Progress in Fluorescence Imaging of the Nearâ€Infraredâ€II Window. ChemBioChem, 2018, 19, 2522-2541.	1.3	71
77	Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Delivery, 2020, 27, 1474-1490.	2.5	71
78	Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Advanced Drug Delivery Reviews, 2021, 178, 113964.	6.6	71
79	Virionâ€Mimicking Nanocapsules from pHâ€Controlled Hierarchical Selfâ€Assembly for Gene Delivery. Angewandte Chemie - International Edition, 2008, 47, 1260-1264.	7.2	70
80	Atom Transfer Radical Polymerization of Methyl Methacrylate Mediated by Copper Bromideâ^^Tetraethyldiethylenetriamine Grafted on Soluble and Recoverable Poly(ethylene-b-ethylene) Tj ETQq0	0 Ozn g BT /0	Ov ers lock 10 T
81	Tumorâ€Associated Macrophage and Tumorâ€Cell Dually Transfecting Polyplexes for Efficient Interleukinâ€12 Cancer Gene Therapy. Advanced Materials, 2021, 33, e2006189.	11.1	68
82	Soluble and Recoverable Support for Copper Bromide-Mediated Living Radical Polymerization. Macromolecules, 2001, 34, 3182-3185.	2.2	66
83	Brominated Poly(2,6-diphenyl-1,4-phenylene oxide) and Its Silica Nanocomposite Membranes for Gas Separation. Industrial & Samp; Engineering Chemistry Research, 2007, 46, 2567-2575.	1.8	65
84	Redox-Activated Light-Up Nanomicelle for Precise Imaging-Guided Cancer Therapy and Real-Time Pharmacokinetic Monitoring. ACS Nano, 2016, 10, 11385-11396.	7.3	65
85	Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials, 2021, 264, 120410.	5.7	65
86	Degradable Dual pH―and Temperatureâ€Responsive Photoluminescent Dendrimers. Chemistry - A European Journal, 2011, 17, 5319-5326.	1.7	63
87	The Intracellular and Extracellular Microenvironment of Tumor Site: The Trigger of Stimuliâ€Responsive Drug Delivery Systems. Small Methods, 2022, 6, e2101437.	4.6	63
88	Mucus Penetrating and Cellâ€Binding Polyzwitterionic Micelles as Potent Oral Nanomedicine for Cancer Drug Delivery. Advanced Materials, 2022, 34, e2109189.	11.1	63
89	Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilibria, 2007, 256, 75-80.	1.4	62
90	pH-Responsive Nanoparticles for Cancer Drug Delivery. Methods in Molecular Biology, 2008, 437, 183-216.	0.4	61

#	Article	IF	CITATIONS
91	Investigation of rare earth upconversion fluorescent nanoparticles in biomedical field. Nanotechnology Reviews, 2019, 8, 1-17.	2.6	61
92	Enzyme-Responsive Charge-Reversal Polymer-Mediated Effective Gene Therapy for Intraperitoneal Tumors. Biomacromolecules, 2018, 19, 2308-2319.	2.6	60
93	Continuous atom transfer radical block copolymerization of methacrylates. AICHE Journal, 2002, 48, 2609-2619.	1.8	58
94	Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnology Advances, 2014, 32, 818-830.	6.0	58
95	Biocompatible Cyclodextrin-Based Metal–Organic Frameworks for Long-Term Sustained Release of Fragrances. Industrial & Engineering Chemistry Research, 2019, 58, 19767-19777.	1.8	58
96	Logical design and application of prodrug platforms. Polymer Chemistry, 2019, 10, 306-324.	1.9	58
97	Reversible Catalyst Supporting via Hydrogen-Bonding-Mediated Self-Assembly for Atom Transfer Radical Polymerization of MMA. Macromolecules, 2004, 37, 1728-1734.	2.2	57
98	Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites. Biomaterials, 2018, 158, 56-73.	5.7	57
99	Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics, 2018, 8, 3949-3963.	4.6	57
100	Environmentally friendly fabrication of new \hat{l}^2 -Cyclodextrin/ZrO2 nanocomposite for simultaneous removal of Pb(II) and BPA from water. Science of the Total Environment, 2021, 784, 147207.	3.9	57
101	Carbon Dioxide Solubility in Polymerized Ionic Liquids Containing Ammonium and Imidazolium Cations from Magnetic Suspension Balance:  P[VBTMA][BF4] and P[VBMI][BF4]. Industrial & Dipineering Chemistry Research, 2007, 46, 5542-5547.	1.8	56
102	Reactive oxygen species (ROS)-responsive nanomedicine for RNAi-based cancer therapy. Nanoscale, 2018, 10, 203-214.	2.8	55
103	Self-assembly of oxidation-responsive polyethylene glycol-paclitaxel prodrug for cancer chemotherapy. Journal of Controlled Release, 2020, 321, 529-539.	4.8	55
104	CelluMOFs: Green, Facile, and Flexible Metalâ€Organic Frameworks for Versatile Applications. Advanced Functional Materials, 2021, 31, 2105395.	7.8	54
105	Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. Journal of Materials Chemistry, 2011, 21, 19114.	6.7	53
106	Terminating the criminal collaboration in pancreatic cancer: Nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials, 2017, 144, 105-118.	5 . 7	53
107	Targeted Coâ€delivery of PTX and TR3 siRNA by PTP Peptide Modified Dendrimer for the Treatment of Pancreatic Cancer. Small, 2017, 13, 1602697.	5.2	52
108	Controlled synthesis of Fe ₃ O ₄ @ZIF-8 nanoparticles for drug delivery. CrystEngComm, 2018, 20, 7486-7491.	1.3	51

#	Article	IF	CITATIONS
109	Atom transfer radical polymerization and copolymerization of vinyl acetate catalyzed by copper halide/terpyridine. AICHE Journal, 2009, 55, 737-746.	1.8	50
110	Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomaterials Science, 2018, 6, 1800-1817.	2.6	50
111	Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1099-1110.	1.7	50
112	Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery. Biomaterials, 2018, 178, 559-569.	5.7	50
113	Atom transfer radical polymerization of methyl methacrylate via reversibly supported catalysts on silica gel via self-assembly. Journal of Polymer Science Part A, 2004, 42, 22-30.	2.5	48
114	Tertiary Amine â€" Enhanced Activity of ATRP Catalysts CuBr/TPMA and CuBr/Me ₆ TREN. Macromolecular Rapid Communications, 2008, 29, 1834-1838.	2.0	48
115	A multifunctional PEG–PLL drug conjugate forming redox-responsive nanoparticles for intracellular drug delivery. Journal of Materials Chemistry B, 2015, 3, 7594-7603.	2.9	48
116	Poly-tetrahydropyrimidine Antibacterial Hydrogel with Injectability and Self-Healing Ability for Curing the Purulent Subcutaneous Infection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50236-50247.	4.0	48
117	A degradable triple temperatureâ€, pHâ€, and redoxâ€, esponsive drug system for cancer chemotherapy. Journal of Biomedical Materials Research - Part A, 2018, 106, 3203-3210.	2.1	46
118	Tuning the Brightness and Photostability of Organic Dots for Multivalent Targeted Cancer Imaging and Surgery. ACS Nano, 2020, 14, 5887-5900.	7.3	46
119	Ring Opening Polymerization of ε-Caprolactone by Rare Earth Alkoxide–CCl4 Systems. Polymer Journal, 1995, 27, 59-64.	1.3	45
120	Nanocomposite Membranes for CO2 Separations:  Silica/Brominated Poly(phenylene oxide). Industrial & Logineering Chemistry Research, 2007, 46, 1547-1551.	1.8	45
121	Integration of Polymerization and Biomineralization as a Strategy to Facilely Synthesize Nanotheranostic Agents. ACS Nano, 2018, 12, 12682-12691.	7. 3	45
122	Assemblies of Peptideâ€Cytotoxin Conjugates for Tumorâ€Homing Chemotherapy. Advanced Functional Materials, 2019, 29, 1807446.	7.8	44
123	Anisotropic electroactive elastomer for highly maneuverable soft robotics. Nanoscale, 2020, 12, 7514-7521.	2.8	44
124	Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism. Advanced Materials, 2022, 34, e2201679.	11.1	44
125	Redoxâ€Activatable ATPâ€Depleting Micelles with Dual Modulation Characteristics for Multidrugâ€Resistant Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601293.	3.9	43
126	Paraptosisâ€Inducing Nanomedicine Overcomes Cancer Drug Resistance for a Potent Cancer Therapy. Small, 2018, 14, 1702446.	5.2	43

#	Article	IF	CITATIONS
127	Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-II biological imaging. Nanoscale, 2020, 12, 5678-5684.	2.8	43
128	Random copolymerization of ?-caprolactone and trimethylene carbonate with rare earth catalysts. Journal of Applied Polymer Science, 1997, 64, 2131-2139.	1.3	41
129	Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy. Biomaterials, 2021, 269, 120604.	5 . 7	41
130	Regulation of biodegradability and drug release behavior of aliphatic polyesters by blending. Journal of Biomedical Materials Research Part B, 2000, 50, 528-535.	3.0	40
131	Albumin-Stabilized Metal–Organic Nanoparticles for Effective Delivery of Metal Complex Anticancer Drugs. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34974-34982.	4.0	40
132	Recent advantage of hyaluronic acid for anti-cancer application: a review of "3S―transition approach. Carbohydrate Polymers, 2020, 238, 116204.	5.1	40
133	Ultrasonic Cavitationâ€Assisted and Acidâ€Activated Transcytosis of Liposomes for Universal Active Tumor Penetration. Advanced Functional Materials, 2021, 31, 2102786.	7.8	40
134	SERS detection of microRNA biomarkers for cancer diagnosis using gold-coated paramagnetic nanoparticles to capture SERS-active gold nanoparticles. RSC Advances, 2017, 7, 52782-52793.	1.7	39
135	Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. International Journal of Pharmaceutics, 2018, 535, 164-171.	2.6	39
136	Encapsulation and controlled release of fragrances from functionalized porous metal–organic frameworks. AICHE Journal, 2019, 65, 491-499.	1.8	39
137	D–A polymers for fluorescence/photoacoustic imaging and characterization of their photothermal properties. Journal of Materials Chemistry B, 2019, 7, 6576-6584.	2.9	38
138	Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy. Journal of Controlled Release, 2020, 324, 250-259.	4.8	38
139	Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Science China Life Sciences, 2018, 61, 436-447.	2.3	37
140	Reactive Oxygen Species (ROS)-Responsive Charge-Switchable Nanocarriers for Gene Therapy of Metastatic Cancer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43352-43362.	4.0	37
141	Synthesis of Degradable Functional Poly(ethylene glycol) Analogs as Versatile Drug Delivery Carriers. Macromolecular Bioscience, 2007, 7, 1187-1198.	2.1	36
142	ZnO Quantum Dots Modified by pH-Activated Charge-Reversal Polymer for Tumor Targeted Drug Delivery. Polymers, 2018, 10, 1272.	2.0	36
143	Multipotent Poly(Tertiary Amineâ€Oxide) Micelles for Efficient Cancer Drug Delivery. Advanced Science, 2022, 9, e2200173.	5.6	36
144	Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. Biomaterials, 2019, 213, 119195.	5.7	34

#	Article	lF	CITATIONS
145	Conjugatedâ€Polymerâ€Based Nanoparticles with Efficient NIRâ€I Fluorescent, Photoacoustic and Photothermal Performance. ChemBioChem, 2019, 20, 2793-2799.	1.3	33
146	Preparation of monodisperse porous polymeric ionic liquid microspheres and their application as stationary phases for HPLC. Talanta, 2020, 208, 120462.	2.9	33
147	A comparison of polymerization characteristics and mechanisms of ?-caprolactone and trimethylene-carbonate with rare earth halides. Journal of Polymer Science Part A, 1997, 35, 1339-1352.	2.5	32
148	Facile synthesis and in vivo evaluation of biodegradable dendritic MRI contrast agents. Journal of Materials Chemistry, 2012, 22, 14369.	6.7	32
149	Jellyfish-Shaped Amphiphilic Dendrimers: Synthesis and Formation of Extremely Uniform Aggregates. Macromolecules, 2014, 47, 916-921.	2.2	32
150	Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery. Nanoscale, 2019, 11, 15907-15916.	2.8	32
151	Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation. Talanta, 2020, 210, 120586.	2.9	32
152	Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. Journal of Controlled Release, 2021, 330, 362-371.	4.8	31
153	New path to treating pancreatic cancer: TRAIL gene delivery targeting the fibroblast-enriched tumor microenvironment. Journal of Controlled Release, 2018, 286, 254-263.	4.8	30
154	Selfâ€Activated Cascadeâ€Responsive Sorafenib and USP22 shRNA Coâ€Delivery System for Synergetic Hepatocellular Carcinoma Therapy. Advanced Science, 2021, 8, 2003042.	5.6	30
155	Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. Small, 2018, 14, e1800360.	5.2	29
156	Organic Semiconductors for Photothermal Therapy and Photoacoustic Imaging. ChemBioChem, 2019, 20, 1628-1636.	1.3	29
157	Copper as the Target for Anticancer Nanomedicine. Advanced Therapeutics, 2019, 2, 1800147.	1.6	29
158	Glutathione-Responsive Magnetic Nanoparticles for Highly Sensitive Diagnosis of Liver Metastases. Nano Letters, 2021, 21, 2199-2206.	4.5	29
159	Nanomedicine from amphiphilized prodrugs: Concept and clinical translation. Advanced Drug Delivery Reviews, 2021, 179, 114027.	6.6	29
160	Synthesis of polyacrylonitrile/polytetrahydropyrimidine (PAN/PTHP) nanofibers with enhanced antibacterial and anti-viral activities for personal protective equipment. Journal of Hazardous Materials, 2022, 424, 127602.	6.5	29
161	Stabilized calcium phosphate hybrid nanocomposite using a benzoxaborole-containing polymer for pH-responsive siRNA delivery. Biomaterials Science, 2018, 6, 3178-3188.	2.6	28
162	Preparation and biomedical application of injectable hydrogels. Materials Chemistry Frontiers, 2021, 5, 4912-4936.	3.2	28

#	Article	IF	Citations
163	A mannosylated PEI–CPP hybrid for TRAIL gene targeting delivery for colorectal cancer therapy. Polymer Chemistry, 2017, 8, 5275-5285.	1.9	27
164	A neutral water-soluble mitochondria-targeting polymer. Chemical Communications, 2019, 55, 10015-10018.	2.2	27
165	Co-delivery of chemotherapeutic drugs and cell cycle regulatory agents using nanocarriers for cancer therapy. Science China Materials, 2021, 64, 1827-1848.	3.5	27
166	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27
167	GDC-0449 improves the antitumor activity of nano-doxorubicin in pancreatic cancer in a fibroblast-enriched microenvironment. Scientific Reports, 2017, 7, 13379.	1.6	26
168	Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. Polymer Chemistry, 2018, 9, 438-449.	1.9	26
169	Preparation and evaluation of PAMAM dendrimer-based polymer gels physically cross-linked by hydrogen bonding. Biomaterials Science, 2019, 7, 3918-3925.	2.6	26
170	Multifunctional Fe ₃ O ₄ @C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms. Nanotechnology, 2019, 30, 425102.	1.3	26
171	Antibacterial material surfaces/interfaces for biomedical applications. Applied Materials Today, 2021, 25, 101192.	2.3	26
172	A multi-stimuli responsive nanoparticulate SN38 prodrug for cancer chemotherapy. Journal of Materials Chemistry B, 2017, 5, 661-670.	2.9	25
173	Advanced Carbon-based Nanoplatforms Combining Drug Delivery and Thermal Therapy for Cancer Treatment. Current Pharmaceutical Design, 2019, 24, 4060-4076.	0.9	25
174	Near-Critical Fluid Micellization for High and Efficient Drug Loading: Encapsulation of Paclitaxel into PEG- <i>b</i> bpcl Micelles. Journal of Physical Chemistry C, 2011, 115, 11951-11956.	1.5	24
175	Dendrimers with the protocatechuic acid building block for anticancer drug delivery. Journal of Materials Chemistry B, 2016, 4, 5236-5245.	2.9	24
176	Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. Journal of Controlled Release, 2021, 330, 992-1003.	4.8	24
177	An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. Biomaterials, 2021, 274, 120893.	5.7	24
178	Virus-mimetic DNA-ejecting polyplexes for efficient intracellular cancer gene delivery. Nano Today, 2021, 39, 101215.	6.2	24
179	A review of the design of packing materials for ion chromatography. Journal of Chromatography A, 2021, 1653, 462313.	1.8	24
180	A modular ROS-responsive platform co-delivered by 10-hydroxycamptothecin and dexamethasone for cancer treatment. Journal of Controlled Release, 2021, 340, 102-113.	4.8	24

#	Article	IF	CITATIONS
181	Facile synthesis of zwitterionic polyglycerol dendrimers with a \hat{l}^2 -cyclodextrin core as MRI contrast agent carriers. Polymer Chemistry, 2016, 7, 6354-6362.	1.9	23
182	Poly- \hat{l}^3 -glutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. Journal of Materials Chemistry B, 2017, 5, 1315-1327.	2.9	23
183	Enzyme-Activatable Interferon–Poly(α-amino acid) Conjugates for Tumor Microenvironment Potentiation. Biomacromolecules, 2019, 20, 3000-3008.	2.6	23
184	Encapsulation of Highly Volatile Fragrances in Y Zeolites for Sustained Release: Experimental and Theoretical Studies. ACS Omega, 2020, 5, 31925-31935.	1.6	23
185	Recent advances in synthesis and application of organic near-infrared fluorescence polymers. Journal of Materials Science, 2020, 55, 9918-9947.	1.7	23
186	Doseâ€Independent Transfection of Hydrophobized Polyplexes. Advanced Materials, 2021, 33, e2102219.	11.1	23
187	Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Current Medicinal Chemistry, 2020, 27, 4720-4740.	1.2	23
188	Ring-Opening Copolymerization of Trimethylene Carbonate and D,L-Lactide by Rare Earth Chloride. Polymer Journal, 1998, 30, 168-170.	1.3	22
189	Selfâ€Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 2517-2527.	3.9	22
190	A magnetic-based SERS approach for highly sensitive and reproducible detection of cancer-related serum microRNAs. Analytical Methods, 2018, 10, 624-633.	1.3	22
191	Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation. Theranostics, 2019, 9, 1580-1598.	4.6	22
192	Dynamic Covalent Câ•€ Bond, Cross-Linked, Injectable, and Self-Healable Hydrogels via Knoevenagel Condensation. Biomacromolecules, 2020, 21, 1234-1242.	2.6	22
193	Improving safety of cancer immunotherapy via delivery technology. Biomaterials, 2021, 265, 120407.	5 . 7	22
194	Atom Transfer Radical Polymerization of N ,N -Dimethylacrylamide. Macromolecular Rapid Communications, 2004, 25, 632-636.	2.0	21
195	Targeted acid-labile conjugates of norcantharidin for cancer chemotherapy. Journal of Materials Chemistry, 2012, 22, 15804.	6.7	21
196	Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery. Biomaterials Science, 2016, 4, 958-969.	2.6	21
197	Enhancing MRI of liver metastases with a zwitterionized biodegradable dendritic contrast agent. Biomaterials Science, 2017, 5, 1588-1595.	2.6	21
198	Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110373.	2.5	21

#	Article	IF	CITATIONS
199	Scar Tissueâ€Targeting Polymer Micelle for Spinal Cord Injury Treatment. Small, 2020, 16, e1906415.	5.2	21
200	Bioinspired nanochannels based on polymeric membranes. Science China Materials, 2021, 64, 1320-1342.	3.5	21
201	Natural Polyphenols-Platinum Nanocomplexes Stimulate Immune System for Combination Cancer Therapy. Nano Letters, 2022, 22, 5615-5625.	4.5	21
202	Magnetic-capture-based SERS detection of multiple serum microRNA biomarkers for cancer diagnosis. Analytical Methods, 2019, 11, 783-793.	1.3	20
203	Glutathione-Specific and Intracellularly Labile Polymeric Nanocarrier for Efficient and Safe Cancer Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14825-14838.	4.0	20
204	A design strategy for D–A conjugated polymers for NIR-II fluorescence imaging. Polymer Chemistry, 2021, 12, 4707-4713.	1.9	20
205	Effect of Cationic Charge Density on Transcytosis of Polyethylenimine. Biomacromolecules, 2021, 22, 5139-5150.	2.6	20
206	Mixed matrix membranes composed of WS2 nanosheets and fluorinated poly(2,6-dimethyl-1,4-phenylene) Tj ETC 226-232.	Qq0 0 0 rg 4.1	gBT /Overlock 19
207	Glycyrrhizin Acid and Glycyrrhetinic Acid Modified Polyethyleneimine for Targeted DNA Delivery to Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2019, 20, 5074.	1.8	19
208	Vanadyl nanocomplexes enhance photothermia-induced cancer immunotherapy to inhibit tumor metastasis and recurrence. Biomaterials, 2021, 277, 121130.	5.7	19
209	Microporous poly(glycidyl methacrylate- <i>co</i> ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polymer Chemistry, 2021, 12, 6050-6070.	1.9	19
210	A nanotherapeutic strategy to overcome chemoresistance to irinotecan/7-ethyl-10-hydroxy-camptothecin in colorectal cancer. Acta Biomaterialia, 2022, 137, 262-275.	4.1	19
211	Mitochondria-targeted polymer-celastrol conjugate with enhanced anticancer efficacy. Journal of Controlled Release, 2022, 342, 122-133.	4.8	19
212	All-Aqueous Direct Deposition of Fragrance-Loaded Nanoparticles onto Fabric Surfaces by Electrospraying. ACS Applied Polymer Materials, 2019, 1, 2590-2596.	2.0	18
213	Synthesis, self-assembly and drug release behaviors of a bottlebrush polymer-HCPT prodrug for tumor chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 181, 278-284.	2.5	18
214	Autophagy-inhibiting polymer as an effective nonviral cancer gene therapy vector with inherent apoptosis-sensitizing ability. Biomaterials, 2020, 255, 120156.	5.7	18
215	Block Copolymer Micelles Formed in Supercritical Fluid Can Become Water-Dispensable Nanoparticles: Poly(ethylene glycol)â^'block-Poly(ϵ-caprolactone) in Trifluoromethane. Industrial & Engineering Chemistry Research, 2009, 48, 1928-1932.	1.8	17
216	A linear polyethylenimine (LPEI) drug conjugate with reversible charge to overcome multidrug resistance in cancer cells. Polymer, 2015, 76, 150-158.	1.8	17

#	Article	IF	CITATIONS
217	Macrophages as an active tumour-targeting carrier of SN38-nanoparticles for cancer therapy. Journal of Drug Targeting, 2018, 26, 458-465.	2.1	17
218	Effects of chirality on gene delivery efficiency of polylysine. Chinese Journal of Polymer Science (English Edition), 2016, 34, 94-103.	2.0	16
219	The Effect of Different Porogens on Porous PMMA Microspheres by Seed Swelling Polymerization and Its Application in High-Performance Liquid Chromatography. Materials, 2018, 11, 705.	1.3	16
220	Preparation and application of PGMA-DVB microspheres via surface-modification with quaternary and phenylboronic acid moiety. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110807.	2.5	16
221	Development and application of ultrasound contrast agents in biomedicine. Journal of Materials Chemistry B, 2021, 9, 7633-7661.	2.9	16
222	Preparation of Pyridine Polyionic Liquid Porous Microspheres and Their Application in Organic Dye Adsorption. Journal of Polymers and the Environment, 2022, 30, 385-400.	2.4	16
223	Synthesis and self-assembly of thymine- and adenine-containing homopolymers and diblock copolymers. Journal of Polymer Science Part A, 2006, 44, 5995-6006.	2.5	15
224	Synthesis of degradable bifunctional dendritic polymers as versatile drug carriers. Polymer Chemistry, 2013, 4, 812-819.	1.9	15
225	Facile synthesis of size-tunable stable nanoparticles via click reaction for cancer drug delivery. Science China Chemistry, 2014, 57, 633-644.	4.2	15
226	Hydroxylâ€tolerated polymerization of Nâ€phenoxycarbonyl αâ€amino acids: A simple way to polypeptides bearing hydroxyl groups. Journal of Polymer Science Part A, 2019, 57, 907-916.	2.5	15
227	Chitosan composite hydrogels crossâ€inked by multifunctional diazo resin as antibacterial dressings for improved wound healing. Journal of Biomedical Materials Research - Part A, 2020, 108, 1890-1898.	2.1	15
228	An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape―and Molecular Architecture Reconfiguration. Angewandte Chemie - International Edition, 2022, 61, e202109941.	7.2	15
229	Pentadentate Copper Halide Complexes Have Higher Catalytic Activity in Atom Transfer Radical Polymerization of Methyl Acrylate Than Hexadentate Complexes. Macromolecules, 2009, 42, 4531-4538.	2.2	14
230	Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials, 2021, 278, 121176.	5.7	14
231	Synthesis of an esterase-sensitive degradable polyester as facile drug carrier for cancer therapy. Journal of Polymer Science Part A, 2016, 54, 507-515.	2.5	13
232	SAHA (vorinostat) facilitates functional polymer-based gene transfection via upregulation of ROS and synergizes with TRAIL gene delivery for cancer therapy. Journal of Drug Targeting, 2019, 27, 306-314.	2.1	13
233	Recent research progress of biologically active peptides. BioFactors, 2022, 48, 575-596.	2.6	13
234	Nanoprodrug ratiometrically integrating autophagy inhibitor and genotoxic agent for treatment of triple-negative breast cancer. Biomaterials, 2022, 283, 121458.	5.7	13

#	Article	IF	CITATIONS
235	A new tetradentate ligand for atom transfer radical polymerization. Journal of Polymer Science Part A, 2004, 42, 3553-3562.	2.5	12
236	Jumping the nuclear envelope barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306. Journal of Controlled Release, 2016, 234, 90-97.	4.8	12
237	Functionalized Nanoparticles Efficiently Enhancing the Targeted Delivery, Tumor Penetration, and Anticancer Activity of 7â€Ethylâ€10â€Hydroxycamptothecin. Advanced Healthcare Materials, 2018, 7, e1701140.	3.9	12
238	Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102058.	1.7	12
239	Fabrication of PEGylated Bi ₂ S ₃ Nanosheets As a Multifunctional Platform for Multimodal Diagnosis and Combination Therapy for Cancer. ACS Applied Bio Materials, 2019, 2, 3870-3876.	2.3	12
240	Preparation of photosensitive diazotized poly (vinyl alcohol-b-styrene) covalent capillary coatings for capillary electrophoresis separation of proteins. Journal of Chromatography A, 2019, 1593, 174-182.	1.8	12
241	Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis. Talanta, 2021, 221, 121493.	2.9	12
242	Recent advances in detection technologies for COVID-19. Talanta, 2021, 233, 122609.	2.9	12
243	Template atom transfer radical polymerization of a diaminopyrimidine-derivatized monomer in the presence of a uracil-containing polymer. Journal of Polymer Science Part A, 2006, 44, 6607-6615.	2.5	11
244	Multilayered Nanoparticles for Controlled Release of Paclitaxel Formed by Near-Critical Micellization of Triblock Copolymers. Macromolecules, 2012, 45, 4809-4817.	2.2	11
245	Synthesis and Properties of a Biodegradable Dendritic Magnetic Resonance Imaging Contrast Agent. Chinese Journal of Chemistry, 2014, 32, 91-96.	2.6	11
246	Gene Delivery: Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery (Adv. Mater. 9/2016). Advanced Materials, 2016, 28, 1714-1714.	11.1	11
247	<i>N</i> Oxide polymer–cupric ion nanogels potentiate disulfiram for cancer therapy. Biomaterials Science, 2020, 8, 1726-1733.	2.6	11
248	Influence of the Modulation of the Protein Corona on Gene Expression Using Polyethylenimine (PEI) Polyplexes as Delivery Vehicle. Advanced Healthcare Materials, 2021, 10, e2100125.	3.9	11
249	Polyplex nanovesicles of single strand oligonucleotides for efficient cytosolic delivery of biomacromolecules. Nano Today, 2021, 39, 101221.	6.2	11
250	Vanadium-based nanomaterials for cancer diagnosis and treatment. Biomedical Materials (Bristol), 2021, 16, 014101.	1.7	11
251	A ROS-responsive synergistic delivery system for combined immunotherapy and chemotherapy. Materials Today Bio, 2022, 14, 100284.	2.6	11
252	Single-step formulation of levodopa-based nanotheranostics – strategy for ultra-sensitive high longitudinal relaxivity MRI guided switchable therapeutics. Biomaterials Science, 2020, 8, 1615-1621.	2.6	10

#	Article	IF	CITATIONS
253	A novel photothermo-responsive nanocarrier for the controlled release of low-volatile fragrances. RSC Advances, 2020, 10, 14867-14876.	1.7	9
254	Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives. Journal of Controlled Release, 2021, 330, 842-850.	4.8	9
255	Hydrogen sulfide-activatable prodrug-backboned block copolymer micelles for delivery of chemotherapeutics. Polymer Chemistry, 2021, 12, 4167-4174.	1.9	9
256	Linear-Dendritic Polymer-Platinum Complexes Forming Well-Defined Nanocapsules for Acid-Responsive Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44028-44040.	4.0	9
257	Prodrug Nanomedicine Inhibits Chemotherapy-Induced Proliferative Burst by Altering the Deleterious Intercellular Communication. ACS Nano, 2021, 15, 781-796.	7.3	8
258	Amidization of doxorubicin alleviates doxorubicin-induced contractile dysfunction and reduced survival in murine cardiomyocytes. Toxicology Letters, 2008, 178, 197-201.	0.4	7
259	pH Responsive Behavior of Fe ₃ O ₄ @PDEA-PEGMA Core-Shell Hybrid Magnetic Nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 487-492.	1.8	7
260	Construction of Dimeric Drug-Loaded Polymeric Micelles with High Loading Efficiency for Cancer Therapy. International Journal of Molecular Sciences, 2019, 20, 1961.	1.8	7
261	Encapsulation of fragrances in micron-size silk fibroin carriers via coaxial electrohydrodynamic techniques. Materials Chemistry and Physics, 2021, 260, 124167.	2.0	7
262	Molecular level precision and high molecular weight peptide dendrimers for drug-specific delivery. Journal of Materials Chemistry B, 2021, 9, 8594-8603.	2.9	7
263	The distinct responsiveness of cytokeratin 19-positive hepatocellular carcinoma to regorafenib. Cell Death and Disease, 2021, 12, 1084.	2.7	7
264	Synthesis of poly-tetrahydropyrimidine antibacterial polymers and research of their basic properties. Biomaterials Science, 2022, 10, 1026-1040.	2.6	7
265	A site-oriented nanosystem for active transcellular chemo-immunotherapy to prevent tumor growth and metastasis. Science China Materials, 2022, 65, 1391-1402.	3.5	6
266	Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
267	Enzymatic drug release cascade from polymeric prodrug nanoassemblies enables targeted chemotherapy. Journal of Controlled Release, 2022, 348, 444-455.	4.8	6
268	Geneâ€Delivery Vectors: Viral Mimicking Ternary Polyplexes: A Reductionâ€Controlled Hierarchical Unpacking Vector for Gene Delivery (Adv. Mater. 10/2014). Advanced Materials, 2014, 26, 1632-1632.	11.1	5
269	Excipient-free nanodispersion of 7-ethyl-10-hydroxycamptothecin exerts potent therapeutic effects against pancreatic cancer cell lines and patient-derived xenografts. Cancer Letters, 2019, 465, 36-44.	3.2	5
270	Semiconductor small molecule IHIC/ITIC applied to photothermal therapy and photoacoustic imaging of tumors. Journal of Photochemistry and Photobiology B: Biology, 2021, 221, 112257.	1.7	5

#	Article	IF	CITATIONS
271	Amphiphilic block copolymer of SN38 prodrugs by atom transfer radical polymerization: Synthesis, kinetic studies and self-assembly. Journal of Controlled Release, 2015, 213, e124.	4.8	4
272	Thermally Responsive Antiâ€Protein Adsorption Coated Capillary for Electrophoretic Analysis of Proteins. ChemistrySelect, 2020, 5, 11854-11861.	0.7	4
273	Folic acid directly modified low molecular weight of polyethyleneimine for targeted pDNA delivery. Journal of Drug Delivery Science and Technology, 2020, 56, 101522.	1.4	4
274	Preparation and anti-tumor application of hyaluronic acid-based material for disulfide and copper ions co-delivery. Science China Technological Sciences, 2021, 64, 2023-2032.	2.0	4
275	A facile synthesis of a theranostic nanoparticle by oxidation of dopamine-DTPA-Gd conjugates. Journal of Materials Chemistry B, 2017, 5, 8754-8760.	2.9	4
276	A tyrosinase-responsive tumor-specific cascade amplification drug release system for melanoma therapy. Journal of Materials Chemistry B, 2021, 9, 9406-9412.	2.9	4
277	Preparation and application of urea-based derivatized \hat{l}^2 -cyclodextrin chiral stationary phase based on diazotized silica microspheres. Journal of Chromatography A, 2022, 1669, 462932.	1.8	4
278	Magnetic Nanoparticle Supported Catalyst for Atom Transfer Radical Polymerization of Methyl Methacrylate. ACS Symposium Series, 2006, , 71-84.	0.5	3
279	Chapter 11. Polymer-Based Prodrugs for Cancer Chemotherapy. RSC Polymer Chemistry Series, 2013, , 245-260.	0.1	3
280	Zwitterionic poly(lysine methacrylate) brush as an effective carrier for drug delivery. Journal of Controlled Release, 2015, 213, e27-e28.	4.8	3
281	Paclitaxel improved gene transfection efficiency through cell synchronization in SW480 cells. Journal of Controlled Release, 2015, 213, e83.	4.8	3
282	On/off switchable epicatechin-based ultra-sensitive MRI-visible nanotheranostics – see it and treat it. Biomaterials Science, 2020, 8, 5210-5218.	2.6	3
283	Silica Nanoparticle Deposition on Natural Fibrous Substrates: Kinetic and Thermodynamic Studies. Industrial & Engineering Chemistry Research, 2021, 60, 9500-9507.	1.8	3
284	An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape―and Molecular Architecture Reconfiguration. Angewandte Chemie, 2022, 134, .	1.6	3
285	Cancer Therapy: Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy (Adv. Mater. 48/2016). Advanced Materials, 2016, 28, 10578-10578.	11.1	2
286	Pancreatic Cancer: Targeted Coâ€delivery of PTX and TR3 siRNA by PTP Peptide Modified Dendrimer for the Treatment of Pancreatic Cancer (Small 2/2017). Small, 2017, 13, .	5.2	2
287	Mild polyaddition and polyalkylation based on the carbon–carbon bond formation reaction of active methylene. RSC Advances, 2019, 9, 40455-40461.	1.7	2
288	A novel M ₂ Ga ₂ GeO ₇ :N ³⁺ (MÂ=ÂCa, Ba, Sr; NÂ=ÂCr, Nd, Er) sub-micron phosphor with multiband NIR emissions: preparation, structure, properties, and LEDs. Nanotechnology, 2021, 32, 395703.	1.3	2

#	Article	IF	Citations
289	Nanotechnology in fragrances: current status and future prospects. Scientia Sinica Chimica, 2019, 49, 575-580.	0.2	2
290	Copper $(\hat{l}\pm)/\langle i\rangle$ cis $\langle i\rangle$ -platinum-loaded nanogels as an adjuvant potentiate disulfiram's antitumor efficacy. Biomaterials Science, 2022, 10, 1384-1392.	2.6	2
291	A dual-channel fluorescent ratio probe with hypoxia targeting and hypoxia activation capacity for tumour imaging. Polymer Chemistry, 2022, 13, 3358-3366.	1.9	2
292	Elastin-like polypeptide fusion for precision design of protein-polymer conjugates with improved pharmacology. Science China Materials, 2015, 58, 767-768.	3.5	1
293	A novel brush-shaped copolymer for drug delivery. Journal of Controlled Release, 2015, 213, e120.	4.8	1
294	Synthesis and properties of zwitterionic dendrimer as drug and imaging probe carrier. Journal of Controlled Release, 2015, 213, e144-e145.	4.8	1
295	A theoretical hypothesis on co-precipitation of hydrophobic antitumor drug and amphiphilic block copolymers. Journal of Controlled Release, 2015, 213, e98-e99.	4.8	1
296	Transform nanomedicine with breakthrough thinking?. Journal of Controlled Release, 2021, 330, 1130-1131.	4.8	1
297	Chapter 13. Near-Critical Micellization for Nanomedicine: Enhanced Drug Loading, Reduced Burst Release. RSC Polymer Chemistry Series, 2013, , 281-301.	0.1	0
298	A tumor-targeting MRI contrast agent based on hypoxia and pH-responsive nanogel. Journal of Controlled Release, 2015, 213, e104-e105.	4.8	0
299	In vitro inhibition of cancer stem cells by biguanidine-based macromolecular drug. Journal of Controlled Release, 2015, 213, e79.	4.8	0
300	Special issue of ChinaNanomedicine 2015. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 353.	1.7	0
301	Ninth Global Chinese Chemical Engineers Symposium Special Issue. Industrial & Engineering Chemistry Research, 2018, 57, 7733-7734.	1.8	0
302	Binding and Release of Reactive Oxygen Species-Responsive Charge Reversal Cationic Polymers with DNA Studied by Surface Plasmon Resonance. Polymer Science - Series A, 2019, 61, 847-854.	0.4	0
303	Current Status and Future Developments in Synthetic Peptides. Current Organic Chemistry, 2018, 22, 1951-1958.	0.9	0
304	Preparation of poly(DMA-co-DBA) and its application in gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-10.	1.8	0
305	Virus-Mimetic DNA-Ejecting Polyplexes for Cancer Gene Delivery. Biomaterial Engineering, 2021, , 1-21.	0.1	0
306	Transcytosis-inducing biomaterials for actively translocating nanomedicines., 2021,,.		0

YOUQING SHEN

#	Article	IF	CITATIONS
307	Role of polyplex charge density in lipopolyplex. Nanoscale, 2022, 14, 7174-7180.	2.8	O
308	Virus-Mimetic DNA-Ejecting Polyplexes for Cancer Gene Delivery. Biomaterial Engineering, 2022, , 395-415.	0.1	0
309	Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications. Angewandte Chemie, 0, , .	1.6	0