
Giorgio Spada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252096/publications.pdf Version: 2024-02-01

CIORCIO SPADA

#	Article	IF	CITATIONS
1	SeeLevelViz: A simple data science tool for dynamic visualization of shoreline displacement caused by sea-level change. Quaternary International, 2022, , .	0.7	1
2	Palaeo-Shoreline Configuration of the Adventure Plateau (Sicilian Channel) at the Last Glacial Maximum. Geosciences (Switzerland), 2022, 12, 125.	1.0	2
3	New estimates of ongoing sea level change and land movements caused by Glacial Isostatic Adjustment in the Mediterranean region. Geophysical Journal International, 2022, 229, 984-998.	1.0	10
4	Constraining the Internal Structures of Venus and Mars from the Gravity Response to Atmospheric Loading. Planetary Science Journal, 2022, 3, 164.	1.5	6
5	On computing viscoelastic Love numbers for general planetary models: the <tt>ALMA3</tt> code. Geophysical Journal International, 2022, 231, 1502-1517.	1.0	6
6	Timescales of emergence of chronic flooding in the major economic center of Guadeloupe. Natural Hazards and Earth System Sciences, 2021, 21, 703-722.	1.5	9
7	Lunar Gravitational-wave Antenna. Astrophysical Journal, 2021, 910, 1.	1.6	41
8	Late Holocene relative seaâ€ l evel fluctuations and crustal mobility at Bataneh (Najirum) archaeological site, Persian Gulf, Iran. Geoarchaeology - an International Journal, 2021, 36, 740-754.	0.7	5
9	New relative sea-level (RSL) indications from the Eastern Mediterranean: Middle Bronze Age to the Roman period (~3800–1800 y BP) archaeological constructions at Dor, the Carmel coast, Israel. PLoS ONE, 2021, 16, e0251870.	1.1	11
10	Mid- to late-Holocene sea-level evolution of the northeastern Aegean sea. Holocene, 2021, 31, 1621-1634.	0.9	4
11	Sea-level rise in Venice: historic and future trends (review article). Natural Hazards and Earth System Sciences, 2021, 21, 2643-2678.	1.5	61
12	Local sea level trends, accelerations and uncertainties over 1993–2019. Scientific Data, 2021, 8, 1.	2.4	255
13	Medieval relative low sea-level indications from the Peloponnese and the Aegean Sea. Quaternary International, 2020, 545, 17-27.	0.7	4
14	Exploring the Drivers of Global and Local Sea‣evel Change Over the 21st Century and Beyond. Earth's Future, 2020, 8, e2019EF001413.	2.4	55
15	Human adaptation to changing coastal landscapes in the Eastern Adriatic: Evidence from Vela Spila cave, Croatia. Quaternary Science Reviews, 2020, 244, 106503.	1.4	6
16	Geoarchaeology as a tool to understand ancient navigation in the northern Persian Gulf and the harbour history of Siraf. Journal of Archaeological Science: Reports, 2020, 33, 102539.	0.2	2
17	Salt pans as a new archaeological sea-level proxy: A test case from Dalmatia, Croatia. Quaternary Science Reviews, 2020, 250, 106680.	1.4	7
18	GLOBAL CHOKE POINTS MAY LINK SEA LEVEL AND HUMAN SETTLEMENT AT THE LAST GLACIAL MAXIMUM. Geographical Review, 2020, 110, 595-620.	0.9	6

#	Article	IF	CITATIONS
19	Evolution of the number of communicative civilizations in the Galaxy: implications on Fermi paradox. International Journal of Astrobiology, 2020, 19, 314-319.	0.9	2
20	Detecting a forced signal in satellite-era sea-level change. Environmental Research Letters, 2020, 15, 094079.	2.2	11
21	Post-LGM coastline evolution of the NW Sicilian Channel: Comparing high-resolution geophysical data with Glacial Isostatic Adjustment modeling. PLoS ONE, 2020, 15, e0228087.	1.1	14
22	Holocene sea-level change on the central coast of Bohai Bay, China. Earth Surface Dynamics, 2020, 8, 679-693.	1.0	9
23	New insights into active tectonics and seismogenic potential of the Italian Southern Alps from vertical geodetic velocities. Solid Earth, 2020, 11, 1681-1698.	1.2	32
24	Can we detect centennial sea-level variations over the last three thousand years in Israeli archaeological records?. Quaternary Science Reviews, 2019, 210, 125-135.	1.4	24
25	Some remarks on Glacial Isostatic Adjustment modelling uncertainties. Geophysical Journal International, 2019, 218, 401-413.	1.0	33
26	Late Holocene sea-level evolution of Paros Island (Cyclades, Greece). Quaternary International, 2019, 500, 139-146.	0.7	16
27	On Some Properties of the Glacial Isostatic Adjustment Fingerprints. Water (Switzerland), 2019, 11, 1844.	1.2	10
28	SELEN ⁴ (SELEN version 4.0): a Fortran program for solving the gravitationally and topographically self-consistent sea-level equation in glacial isostatic adjustment modeling. Geoscientific Model Development, 2019, 12, 5055-5075.	1.3	36
29	Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions. Earth-Science Reviews, 2019, 190, 589-604.	4.0	82
30	A generalization of the Becker model in linear viscoelasticity: creep, relaxation and internal friction. Mechanics of Time-Dependent Materials, 2019, 23, 283-294.	2.3	7
31	Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth System Science Data, 2019, 11, 1189-1202.	3.7	97
32	No evidence from the eastern Mediterranean for a MIS 5e double peak sea-level highstand. Quaternary Research, 2018, 89, 505-510.	1.0	4
33	Contributions of a Strengthened Early Holocene Monsoon and Sediment Loading to Presentâ€Day Subsidence of the Gangesâ€Brahmaputra Delta. Geophysical Research Letters, 2018, 45, 1433-1442.	1.5	24
34	Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of Glacial Isostatic Adjustment. Journal of Geodynamics, 2018, 122, 25-40.	0.7	26
35	New relative sea-level insights into the isostatic history of the Western Mediterranean. Quaternary Science Reviews, 2018, 201, 396-408.	1.4	48
36	A benchmark study of numerical implementations of the sea level equation in GIA modelling. Geophysical Journal International, 2018, 215, 389-414.	1.0	33

#	Article	IF	CITATIONS
37	Tide gauge observations in Antarctica (1958–2014) and recent ice loss. Antarctic Science, 2017, 29, 369-381.	0.5	6
38	Decoding the origins of vertical land motions observed today at coasts. Geophysical Journal International, 2017, 210, 148-165.	1.0	23
39	Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth and Planetary Science Letters, 2017, 473, 24-32.	1.8	92
40	Shortâ€ŧerm variations of <scp>I</scp> celandic ice cap mass inferred from cGPS coordinate time series. Geochemistry, Geophysics, Geosystems, 2017, 18, 2099-2119.	1.0	6
41	A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos, Solitons and Fractals, 2017, 102, 333-338.	2.5	48
42	Evaluating Model Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level Changes. Journal of Climate, 2017, 30, 8565-8593.	1.2	57
43	Extent and dynamic evolution of the lost land aquaterra since the Last Glacial Maximum. Comptes Rendus - Geoscience, 2017, 349, 151-158.	0.4	11
44	Evaluating Model Simulations of Twentieth-Century Sea Level Rise. Part I: Global Mean Sea Level Change. Journal of Climate, 2017, 30, 8539-8563.	1.2	64
45	Assessing tectonic subsidence from estimates of Holocene relative sea-level change: An example from the NW Mediterranean (Magra Plain, Italy). Holocene, 2017, 27, 1988-1999.	0.9	9
46	Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview. Surveys in Geophysics, 2017, 38, 153-185.	2.1	67
47	New insights into the sea-level evolution in Corsica (NW Mediterranean) since the late Neolithic. Journal of Archaeological Science: Reports, 2017, 12, 782-793.	0.2	15
48	Regional Sea Level Changes for the Twentieth and the Twenty-First Centuries Induced by the Regional Variability in Greenland Ice Sheet Surface Mass Loss. Journal of Climate, 2017, 30, 2011-2028.	1.2	15
49	Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: scenarios and impacts. Natural Hazards and Earth System Sciences, 2017, 17, 2271-2287.	1.5	22
50	On computing the geoelastic response to a disk load. Geophysical Journal International, 2016, 205, 1804-1812.	1.0	23
51	Testing models of ice cap extent, South Georgia, sub-Antarctic. Quaternary Science Reviews, 2016, 154, 157-168.	1.4	9
52	Spectral analysis of sea level during the altimetry era, and evidence for GIA and glacial melting fingerprints. Global and Planetary Change, 2016, 143, 34-49.	1.6	16
53	Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Climate Dynamics, 2016, 47, 2851-2866.	1.7	78
54	Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 2016, 155, 172-197.	4.0	262

#	Article	IF	CITATIONS
55	A heuristic evaluation of longâ€ŧerm global sea level acceleration. Geophysical Research Letters, 2015, 42, 4166-4172.	1.5	11
56	A new Holocene relative sea-level curve for western Brittany (France): Insights on isostatic dynamics along the Atlantic coasts of north-western Europe. Quaternary Science Reviews, 2015, 129, 341-365.	1.4	31
57	Mazara del Vallo Tide Gauge Observations (1906–16): Land Subsidence or Sea-Level Rise?. Journal of Coastal Research, 2015, 31, 69.	0.1	4
58	Terminal Antarctic melting inferred from a far-field coastal site. Quaternary Science Reviews, 2015, 116, 122-132.	1.4	23
59	Ice melting and earthquake suppression in Greenland. Polar Science, 2015, 9, 94-106.	0.5	19
60	Empirical mode decomposition of long-term polar motion observations. Studia Geophysica Et Geodaetica, 2015, 59, 200-211.	0.3	3
61	Origin and Holocene Evolution of a Slightly Submerged Tidal Notch in the NE Adriatic. Journal of Coastal Research, 2015, 300, 255-264.	0.1	5
62	On the Rebound: Modeling Earth's Ever-Changing Shape. Eos, 2015, 96, .	0.1	18
63	Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872-2012). Annals of Geophysics, 2015, 57, .	0.5	13
64	Sources of 21st century regional sea-level rise along the coast of northwest Europe. Ocean Science, 2014, 10, 473-483.	1.3	16
65	A study of the longest tide gauge sea-level record in Greenland (Nuuk/Godthab, 1958–2002). Global and Planetary Change, 2014, 118, 42-51.	1.6	13
66	Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 2014, 113, 11-22.	1.6	163
67	Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Global and Planetary Change, 2014, 123, 55-66.	1.6	56
68	Vertical ground displacement at Campi Flegrei (Italy) in the fifth century: Rapid subsidence driven by pore pressure drop. Geophysical Research Letters, 2014, 41, 1471-1478.	1.5	37
69	Decadal geodetic variations in Ny-Ãlesund (Svalbard): role of past and present ice-mass changes. Geophysical Journal International, 2014, 198, 285-297.	1.0	19
70	Towards Constraining Glacial Isostatic Adjustment in Greenland Using ICESat and GPS Observations. International Association of Geodesy Symposia, 2014, , 325-331.	0.2	1
71	Anomalous secular sea-level acceleration in the Baltic Sea caused by isostatic adjustment. Annals of Geophysics, 2014, 57, .	0.5	4
72	Paleofluvial Mega-Canyon Beneath the Central Greenland Ice Sheet. Science, 2013, 341, 997-999.	6.0	63

#	Article	IF	CITATIONS
73	Love numbers of a generalized Maxwell sphere. Studia Geophysica Et Geodaetica, 2013, 57, 1-16.	0.3	1
74	Intermittent sea-level acceleration. Global and Planetary Change, 2013, 109, 64-72.	1.6	20
75	MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age, 2013, 35, 1157-1172.	3.0	172
76	Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by meltâ€induced and dynamic ice loss. Journal of Geophysical Research: Solid Earth, 2013, 118, 1837-1844.	1.4	32
77	The gravitationally consistent seaâ€level fingerprint of future terrestrial ice loss. Geophysical Research Letters, 2013, 40, 482-486.	1.5	51
78	Putative miRNAs for the diagnosis of dyslexia, dyspraxia, and specific language impairment. Epigenetics, 2013, 8, 1023-1029.	1.3	6
79	A fiber optic gyroscope on multiplexed telecommunication network with a large enclosed area. , 2013, , .		4
80	Vertical GPS ground motion rates in the Euroâ€Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubiaâ€Eurasia plate boundary. Journal of Geophysical Research: Solid Earth, 2013, 118, 6003-6024.	1.4	249
81	Becker and Lomnitz rheological models: A comparison. AIP Conference Proceedings, 2012, , .	0.3	4
82	On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep. Rheologica Acta, 2012, 51, 783-791.	1.1	19
83	Decoding last interglacial sea-level variations in the western Mediterranean using speleothem encrustations from coastal caves in Mallorca and Sardinia: A field data – model comparison. Quaternary International, 2012, 262, 56-64.	0.7	19
84	Evidence for centennial scale sea level variability during the Medieval Climate Optimum (Crusader) Tj ETQq0 0 0	rgBT_/Ove 1.8	rlock 10 Tf 50
85	New estimates of secular sea level rise from tide gauge data and GIA modelling. Geophysical Journal International, 2012, , no-no.	1.0	33
86	Late <scp>H</scp> olocene Sea Level Reconstructions Based on Observations of <scp>R</scp> oman Fish Tanks, <scp>T</scp> yrrhenian Coast of <scp>I</scp> taly. Geoarchaeology - an International Journal, 2012, 27, 259-277.	0.7	47
87	Geomagnetic South Atlantic Anomaly and global sea level rise: A direct connection?. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 74, 129-135.	0.6	16
88	Greenland uplift and regional sea level changes from ICESat observations and GIA modelling. Geophysical Journal International, 2012, 189, 1457-1474.	1.0	39
89	Implementation of the Complete Sea Level Equation in a 3D Finite Elements Scheme: A Validation Study. International Association of Geodesy Symposia, 2012, , 393-397.	0.2	2
90	Multi-decadal sea level trends and land movements in the Mediterranean Sea with estimates of factors perturbing tide gauge data and cumulative uncertainties. Global and Planetary Change, 2011, 76, 63-76.	1.6	44

#	Article	IF	CITATIONS
91	Istrian and Dalmatian fishtanks as sea-level markers. Quaternary International, 2011, 232, 105-113.	0.7	21
92	A benchmark study for glacial isostatic adjustment codes. Geophysical Journal International, 2011, 185, 106-132.	1.0	97
93	Shallow upper mantle rheology and secular ice sheet fluctuations. Tectonophysics, 2011, 511, 89-98.	0.9	13
94	Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0). Journal of Biomedical Informatics, 2011, 44, 615-620.	2.5	20
95	Creep, relaxation and viscosity properties for basic fractional models in rheology. European Physical Journal: Special Topics, 2011, 193, 133-160.	1.2	352
96	Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density. Cryosphere, 2011, 5, 173-186.	1.5	167
97	A sea level equation for seismic perturbations. Geophysical Journal International, 2010, 180, 88-100.	1.0	16
98	Clacio–isostatic Adjustment in the Po Plain and in the Northern Adriatic Region. Pure and Applied Geophysics, 2009, 166, 1303-1318.	0.8	15
99	Bounds on the Time–history and Holocene Mass Budget of Antarctica from Sea–level Records in SE Tunisia. Pure and Applied Geophysics, 2009, 166, 1319-1341.	0.8	14
100	Influence of glacial isostatic adjustment upon current sea level variations in the Mediterranean. Tectonophysics, 2009, 474, 56-68.	0.9	73
101	Holocene relative sea-level changes and vertical movements along the Italian and Istrian coastlines. Quaternary International, 2009, 206, 102-133.	0.7	202
102	Glacio-isostatic Adjustment in the Po Plain and in the Northern Adriatic Region. , 2009, , 1303-1318.		1
103	Glacio and hydro-isostasy in the Mediterranean Sea: ClarkÂ's zones and role of remote ice sheets. Annals of Geophysics, 2009, 50, .	0.5	4
104	Bounds on the Time-history and Holocene Mass Budget of Antarctica from Sea-level Records in SE Tunisia. , 2009, , 1319-1341.		0
105	Post-seismic rebound of a spherical Earth: new insights from the application of the Post-Widder inversion formula. Geophysical Journal International, 2008, 174, 672-695.	1.0	29
106	ALMA, a Fortran program for computing the viscoelastic Love numbers of a spherically symmetric planet. Computers and Geosciences, 2008, 34, 667-687.	2.0	30
107	SELEN: A Fortran 90 program for solving the "sea-level equation― Computers and Geosciences, 2007, 33, 538-562.	2.0	154
108	Glacial isostatic adjustment and relative sea-level changes: the role of lithospheric and upper mantle heterogeneities in a 3-D spherical Earth. Geophysical Journal International, 2006, 165, 692-702.	1.0	47

#	Article	IF	CITATIONS
109	Using the Post-Widder formula to compute the Earth's viscoelastic Love numbers. Geophysical Journal International, 2006, 166, 309-321.	1.0	39
110	Isostatic rebound following the Alpine deglaciation: impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International, 2005, 162, 137-147.	1.0	66
111	Mantle viscosity inference: a comparison between simulated annealing and neighbourhood algorithm inversion methods. Geophysical Journal International, 2004, 157, 890-900.	1.0	12
112	Monte Carlo Inversion of DInSAR Data for Dislocation Modeling: Application to the 1997 Umbria-Marche Seismic Sequence (Central Italy). Pure and Applied Geophysics, 2004, 161, 817-838.	0.8	12
113	Earthquakes and relative sealevel changes. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	19
114	Modeling Earth's post-glacial rebound. Eos, 2004, 85, 62.	0.1	34
115	Asperity distribution of the 1964 Great Alaska earthquake and its relation to subsequent seismicity in the region. Tectonophysics, 2003, 367, 219-233.	0.9	18
116	Mantle viscosity beneath the Hudson Bay: An inversion based on the Metropolis algorithm. Journal of Geophysical Research, 2002, 107, ETG 12-1-ETG 12-15.	3.3	17
117	Mantle viscosity from Monte Carlo inversion of very long baseline interferometry data. Journal of Geophysical Research, 2001, 106, 16375-16385.	3.3	12
118	The effect of global seismicity on the polar motion of a viscoelastic Earth. Journal of Geophysical Research, 2001, 106, 6761-6767.	3.3	9
119	Plate motions predictions based on the constraint of toroidal-poloidal equipartition. Geophysical Research Letters, 2000, 27, 2381-2384.	1.5	1
120	Global postseismic deformation: Deep earthquakes. Journal of Geophysical Research, 2000, 105, 631-652.	3.3	18
121	Postglacial rebound in a non-Newtonian spherical Earth. Geophysical Research Letters, 2000, 27, 2065-2068.	1.5	35
122	Large earthquakes and Earth rotation: The role of mantle relaxation. Geophysical Research Letters, 1999, 26, 911-914.	1.5	13
123	Spherical versus flat models of coseismic and postseismic deformations. Journal of Geophysical Research, 1999, 104, 13115-13134.	3.3	36
124	Stress diffusion following large earthquakes: a comparison between spherical and flat-earth models. Geophysical Journal International, 1998, 133, 85-90.	1.0	16
125	Effect of subductions and trends in seismically induced Earth rotational variations. Journal of Geophysical Research, 1998, 103, 7351-7362.	3.3	10
126	Why are earthquakes nudging the pole towards 140°E?. Geophysical Research Letters, 1997, 24, 539-542.	1.5	15

#	Article	IF	CITATIONS
127	Time-dependent residual deformations associated with the June 9, 1994 Bolivia Earthquake. Geophysical Research Letters, 1997, 24, 2849-2852.	1.5	8
128	An Explanation for Earth's Long-Term Rotational Stability. Science, 1997, 275, 372-375.	6.0	76
129	Lateral viscosity variations and post-glacial rebound: Effects on present-day VLBI baseline deformations. Geophysical Research Letters, 1997, 24, 13-16.	1.5	32
130	Global postseismic rebound of a viscoelastic Earth: Theory for finite faults and application to the 1964 Alaska earthquake. Journal of Geophysical Research, 1997, 102, 477-492.	3.3	82
131	Postglacial rebound and lateral viscosity variations: a semi-analytical approach based on a spherical model with Maxwell rheology. Geophysical Journal International, 1997, 129, F9-F13.	1.0	27
132	Long-term rotation and mantle dynamics of the Earth, Mars, and Venus. Journal of Geophysical Research, 1996, 101, 2253-2266.	3.3	27
133	Analytical visco-elastic relaxation models. Geophysical Research Letters, 1996, 23, 697-700.	1.5	48
134	Effects of lateral viscosity variations on present-day horizontal motions and baseline deformations due to glacial isostatic adjustment. Physics and Chemistry of the Earth, 1996, 21, 325-330.	0.3	0
135	Compressible rotational deformation. Geophysical Journal International, 1996, 126, 735-761.	1.0	64
136	Global post-seismic deformation. Geophysical Journal International, 1995, 120, 544-566.	1.0	120
137	Changes in the Earth inertia tensor: The role of boundary conditions at the core-mantle interface. Geophysical Research Letters, 1995, 22, 3557-3560.	1.5	19
138	True polar wander affects the Earth dynamic topography and favours a highly viscous lower mantle. Geophysical Research Letters, 1994, 21, 137-140.	1.5	6
139	Time-dependent density anomalies in a stratified, viscoelastic mantle: Implications for the geoid, Earth's rotation and sea-level fluctuations. Surveys in Geophysics, 1993, 14, 537-553.	2.1	7
140	Polar wandering of a dynamic earth. Geophysical Journal International, 1993, 113, 284-298.	1.0	110
141	On A Particular Solution of the Non-Linear Liouville Equations. Geophysical Journal International, 1993, 114, 399-404.	1.0	7
142	True polar wander and long-wavelength dynamic topography. Tectonophysics, 1993, 223, 3-13.	0.9	5
143	Isostatic deformations and polar wander induced by redistribution of mass within the Earth. Journal of Geophysical Research, 1992, 97, 14223-14236.	3.3	40
144	Excitation of true polar wander by subduction. Nature, 1992, 360, 452-454.	13.7	115

#	Article	IF	CITATIONS
145	Effects on post-glacial rebound from the hard rheology in the transition zone. Geophysical Journal International, 1992, 109, 683-700.	1.0	114
146	Viscoelastic responses of a hard transition zone: effects on postglacial uplifts and rotational signatures. Earth and Planetary Science Letters, 1991, 105, 453-462.	1.8	8
147	Stress fields and tectonic motions induced by time-varying density anomalies in the lithosphere. Physics of the Earth and Planetary Interiors, 1991, 66, 294-306.	0.7	1
148	Lower-mantle viscosity constrained by seismicity around deglaciated regions. Nature, 1991, 351, 53-55.	13.7	47
149	Ground motion and stress accumulation driven by density anomalies in a viscoelastic lithosphere. Some results for the Apennines. Geophysical Journal International, 1988, 95, 463-480.	1.0	9