
Girish S Ratnaparkhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SUMOylation of Jun fine-tunes the Drosophila gut immune response. PLoS Pathogens, 2022, 18, e1010356.	4.7	3
2	Caspar, an adapter for VAPB and TER94, modulates the progression of ALS8 by regulating IMD/NFκB-mediated glial inflammation in a <i>Drosophila</i> model of human disease. Human Molecular Genetics, 2022, 31, 2857-2875.	2.9	1
3	SUMOylation of Dorsal attenuates Toll/NF- $\hat{I}^{ ext{PB}}$ signaling. Genetics, 2022, , .	2.9	1
4	A multi-omics analysis reveals that the lysine deacetylase ABHD14B influences glucose metabolism in mammals. Journal of Biological Chemistry, 2022, 298, 102128.	3.4	8
5	A Superfamily-wide Activity Atlas of Serine Hydrolases in <i>Drosophila melanogaster</i> . Biochemistry, 2021, 60, 1312-1324.	2.5	18
6	SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Frontiers in Cell and Developmental Biology, 2021, 9, 695630.	3.7	1
7	Drosophila Mon1 and Rab7 interact to regulate glutamate receptor levels at the neuromuscular junction. International Journal of Developmental Biology, 2020, 64, 289-297.	0.6	1
8	SUMO conjugation regulates immune signalling. Fly, 2020, 14, 62-79.	1.7	7
9	Caspar SUMOylation regulates lifespan. MicroPublication Biology, 2020, 2020, .	0.1	0
10	Monensin Sensitive 1 Regulates Dendritic Arborization in Drosophila by Modulating Endocytic Flux. Frontiers in Cell and Developmental Biology, 2019, 7, 145.	3.7	1
11	<i>Drosophila</i> Mon1 constitutes a novel node in the brain-gonad axis that is essential for female germline maturation. Development (Cambridge), 2019, 146, .	2.5	11
12	SOD1 activity threshold and TOR signalling modulate VAP(P58S) aggregation via ROS-induced proteasomal degradation in a <i>Drosophila</i> model of Amyotrophic Lateral Sclerosis. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	14
13	Understanding Motor Disorders Using Flies. , 2019, , 131-162.		Ο
14	RDGBα localization and function at a membrane contact site is regulated by FFAT/VAP interactions. Journal of Cell Science, 2018, 131, .	2.0	23
15	Stonewall and Brickwall: Two Partially Redundant Determinants Required for the Maintenance of Female Germline in Drosophila. G3: Genes, Genomes, Genetics, 2018, 8, 2027-2041.	1.8	6
16	<i>Drosophila</i> DNA/RNA methyltransferase contributes to robust host defense in ageing animals by regulating sphingolipid metabolism. Journal of Experimental Biology, 2018, 221, .	1.7	16
17	Signaling Cascades, Gradients, and Gene Networks in Dorsal/Ventral Patterning. , 2015, , 131-151.		1
18	SUMO-Enriched Proteome for Drosophila Innate Immune Response. G3: Genes, Genomes, Genetics, 2015, 5. 2137-2154.	1.8	31

GIRISH S RATNAPARKHI

#	Article	IF	CITATIONS
19	A Presynaptic Regulatory System Acts Transsynaptically via Mon1 to Regulate Glutamate Receptor Levels in <i>Drosophila</i> . Genetics, 2015, 201, 651-664.	2.9	17
20	Gene Duplication, Lineage-Specific Expansion, and Subfunctionalization in the MADF-BESS Family Patterns the <i>Drosophila</i> Wing Hinge. Genetics, 2014, 196, 481-496.	2.9	32
21	A genetic screen identifies <i>Tor</i> as an interactor of VAPB in a <i>Drosophila</i> model of amyotrophic lateral sclerosis. Biology Open, 2014, 3, 1127-1138.	1.2	31
22	The <i>Hydra</i> small ubiquitinâ€like modifier. Genesis, 2013, 51, 619-629.	1.6	2
23	Non-cell-autonomous inhibition of photoreceptor development by Dip3. Developmental Biology, 2008, 323, 105-113.	2.0	3
24	Dorsal interacting protein 3 potentiates activation by Drosophila Rel homology domain proteins. Developmental and Comparative Immunology, 2008, 32, 1290-1300.	2.3	19
25	Uncoupling Dorsal-mediated activation from Dorsal-mediated repression in the Drosophila embryo. Development (Cambridge), 2006, 133, 4409-4414.	2.5	27
26	Osmolytes Stabilize Ribonuclease S by Stabilizing Its Fragments S Protein and S Peptide to Compact Folding-competent States. Journal of Biological Chemistry, 2001, 276, 28789-28798.	3.4	70
27	Structural and thermodynamic consequences of introducing α-aminoisobutyric acid in the S peptide of ribonuclease S. Protein Engineering, Design and Selection, 2000, 13, 697-702.	2.1	15
28	Thermodynamic and Structural Studies of Cavity Formation in Proteins Suggest That Loss of Packing Interactions Rather Than the Hydrophobic Effect Dominates the Observed Energetics,. Biochemistry, 2000, 39, 12365-12374.	2.5	71
29	Native-state hydrogen-exchange studies of a fragment complex can provide structural information about the isolated fragments. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7899-7904.	7.1	24
30	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	1.1	0
31	X-ray crystallographic studies of the denaturation of ribonuclease S. Proteins: Structure, Function and Bioinformatics, 1999, 36, 282-294.	2.6	14
32	Discrepancies between the NMR and X-ray Structures of Uncomplexed Barstar:  Analysis Suggests That Packing Densities of Protein Structures Determined by NMR Are Unreliable,. Biochemistry, 1998, 37, 6958-6966.	2.5	68
33	Dynamics of ribonuclease A and ribonuclease S: Computational and experimental studies. Protein Science, 1996, 5, 2104-2114.	7.6	21
34	Thermodynamic and Structural Consequences of Changing a Sulfur Atom to a Methylene Group in the M13Nle Mutation in Ribonuclease-S. Biochemistry, 1994, 33, 8587-8593.	2.5	56