

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1251673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovascular Research, 2022, 118, 1548-1563.	3.8	31
2	Direct cardiac reprogramming comes of age: Recent advance and remaining challenges. Seminars in Cell and Developmental Biology, 2022, 122, 37-43.	5.0	10
3	Delineating chromatin accessibility re-patterning at single cell level during early stage of direct cardiac reprogramming. Journal of Molecular and Cellular Cardiology, 2022, 162, 62-71.	1.9	19
4	VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circulation Research, 2022, 130, 5-23.	4.5	23
5	OSKM-mediated reversible reprogramming of cardiomyocytes regenerates injured myocardium. Cell Regeneration, 2022, 11, 6.	2.6	2
6	Inhibition of EZH2 primes the cardiac gene activation via removal of epigenetic repression during human direct cardiac reprogramming. Stem Cell Research, 2021, 53, 102365.	0.7	18
7	Development of next-generation tumor-homing induced neural stem cells to enhance treatment of metastatic cancers. Science Advances, 2021, 7, .	10.3	8
8	ExpressHeart: Web Portal to Visualize Transcriptome Profiles of Non-Cardiomyocyte Cells. International Journal of Molecular Sciences, 2021, 22, 8943.	4.1	3
9	Editorial: Cardiomyocyte Maturation: Novel Insights for Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 730622.	3.7	0
10	Functional coordination of nonâ€myocytes plays a key role in adult zebrafish heart regeneration. EMBO Reports, 2021, 22, e52901.	4.5	17
11	Molecular and cellular basis of embryonic cardiac chamber maturation. Seminars in Cell and Developmental Biology, 2021, 118, 144-149.	5.0	4
12	Direct cell reprogramming: approaches, mechanisms and progress. Nature Reviews Molecular Cell Biology, 2021, 22, 410-424.	37.0	178
13	In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-Like Cells. Methods in Molecular Biology, 2021, 2158, 155-170.	0.9	0
14	What's in a cardiomyocyte – And how do we make one through reprogramming?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118464.	4.1	13
15	Down-regulation of Beclin1 promotes direct cardiac reprogramming. Science Translational Medicine, 2020, 12, .	12.4	41
16	An Optimized Protocol for Human Direct Cardiac Reprogramming. STAR Protocols, 2020, 1, 100010.	1.2	11
17	Reprogramming of Non-myocytes into Cardiomyocyte-like Cells: Challenges and Opportunities. Current Cardiology Reports, 2020, 22, 54.	2.9	7
18	Isoform Specific Effects of Mef2C during Direct Cardiac Reprogramming. Cells, 2020, 9, 268.	4.1	10

#	Article	IF	CITATIONS
19	Heart regeneration using somatic cells. , 2020, , 259-283.		Ο
20	Angiopoietin-like 4 deficiency upregulates macrophage function through the dysregulation of cell-intrinsic fatty acid metabolism. American Journal of Cancer Research, 2020, 10, 595-609.	1.4	3
21	Myrothecine A modulates the proliferation of HCC cells and the maturation of dendritic cells through downregulating miR-221. International Immunopharmacology, 2019, 75, 105783.	3.8	14
22	Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming. Cell Stem Cell, 2019, 25, 149-164.e9.	11.1	87
23	Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Research and Therapy, 2019, 10, 300.	5.5	90
24	MiR-221 Promotes Hepatocellular Carcinoma Cells Migration via Targeting PHF2. BioMed Research International, 2019, 2019, 1-11.	1.9	31
25	Epigenomic Reprogramming in Cardiovascular Disease. , 2019, , 149-163.		1
26	Plateletâ€Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury. Advanced Functional Materials, 2019, 29, 1803567.	14.9	92
27	Lin28a Regulates Pathological Cardiac Hypertrophic Growth Through Pck2-Mediated Enhancement of Anabolic Synthesis. Circulation, 2019, 139, 1725-1740.	1.6	32
28	Combined therapy with atorvastatin and atorvastatin-pretreated mesenchymal stem cells enhances cardiac performance after acute myocardial infarction by activating SDF-1/CXCR4 axis. American Journal of Translational Research (discontinued), 2019, 11, 4214-4231.	0.0	10
29	Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future. Stem Cells Translational Medicine, 2018, 7, 354-359.	3.3	95
30	Initiating Events in Direct Cardiomyocyte Reprogramming. Cell Reports, 2018, 22, 1913-1922.	6.4	23
31	CRTH2 promotes endoplasmic reticulum stressâ€induced cardiomyocyte apoptosis through mâ€calpain. EMBO Molecular Medicine, 2018, 10, .	6.9	55
32	Direct InÂVivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction. Cell Stem Cell, 2018, 22, 91-103.e5.	11.1	138
33	A Loss of Function Screen of Epigenetic Modifiers and Splicing Factors during Early Stage of Cardiac Reprogramming. Stem Cells International, 2018, 2018, 1-14.	2.5	25
34	Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics, 2018, 8, 1869-1878.	10.0	263
35	Rapamycin attenuates pathological hypertrophy caused by an absence of trabecular formation. Scientific Reports, 2018, 8, 8584.	3.3	4
36	Diabetes Exacerbates Myocardial Ischemia/Reperfusion Injury by Down-Regulation of MicroRNA and Up-Regulation of O-GlcNAcylation. JACC Basic To Translational Science, 2018, 3, 350-362.	4.1	36

#	Article	IF	CITATIONS
37	TGF-β1 expression in regulatory NK1.1CD4NKG2D T cells dependents on the PI3K-p85α/JNK, NF-κB and STAT3 pathways. American Journal of Cancer Research, 2018, 8, 489-501.	1.4	2
38	Human fused NKG2D–IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells. Cellular and Molecular Immunology, 2017, 14, 293-307.	10.5	44
39	<scp>NK</scp> 1.1 ^{â^'} <scp>CD</scp> 4 ⁺ <scp>NKG</scp> 2D ⁺ T cells suppress <scp>DSS</scp> â€induced colitis in mice through production of <scp>TGF</scp> â€i2. Journal of Cellular and Molecular Medicine, 2017, 21, 1431-1444.	3.6	9
40	NKG2D ligand RAE1ε induces generation and enhances the inhibitor function of myeloidâ€derived suppressor cells in mice. Journal of Cellular and Molecular Medicine, 2017, 21, 2046-2054.	3.6	11
41	Molecular barriers to direct cardiac reprogramming. Protein and Cell, 2017, 8, 724-734.	11.0	31
42	Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction. Methods in Molecular Biology, 2017, 1521, 69-88.	0.9	10
43	Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature, 2017, 551, 100-104.	27.8	168
44	Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes. Cell Reports, 2017, 20, 3014-3024.	6.4	54
45	In Vivo Lineage Reprogramming of Fibroblasts to Cardiomyocytes for Heart Regeneration. Pancreatic Islet Biology, 2017, , 45-63.	0.3	1
46	Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports, 2017, 7, 2193.	3.3	426
47	Highâ€dose wogonin exacerbates <scp>DSS</scp> â€induced colitis by upâ€regulating effector T cell function and inhibiting Treg cell. Journal of Cellular and Molecular Medicine, 2017, 21, 286-298.	3.6	13
48	Chitosan nanoparticle-based delivery of fused NKG2D–IL-21 gene suppresses colon cancer growth in mice. International Journal of Nanomedicine, 2017, Volume 12, 3095-3107.	6.7	41
49	FcγRIIb attenuates TLR4-mediated NF-κB signaling in B cells. Molecular Medicine Reports, 2017, 16, 5693-5698.	2.4	3
50	Advances in the Study of Heart Development and Disease Using Zebrafish. Journal of Cardiovascular Development and Disease, 2016, 3, 13.	1.6	83
51	ErbB2 is required for cardiomyocyte proliferation in murine neonatal hearts. Gene, 2016, 592, 325-330.	2.2	13
52	Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell, 2016, 18, 382-395.	11.1	186
53	Fat for fostering: Regenerating injured heart using local adipose tissue. EBioMedicine, 2016, 7, 25-26.	6.1	5
54	Advanced Technologies Lead iNto New Reprogramming Routes. Cell Stem Cell, 2016, 19, 286-288.	11.1	0

#	Article	IF	CITATIONS
55	Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discovery, 2016, 2, 16036.	6.7	42
56	Isolation and Characterization of Single Cells from Zebrafish Embryos. Journal of Visualized Experiments, 2016, , .	0.3	9
57	Generation of an inducible fibroblast cell line for studying direct cardiac reprogramming. Genesis, 2016, 54, 398-406.	1.6	18
58	Hope for the brokenhearted. Science, 2016, 352, 1400-1401.	12.6	3
59	Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Research, 2016, 16, 507-518.	0.7	99
60	lgG-Containing Isoforms of Neuregulin-1 Are Dispensable for Cardiac Trabeculation in Zebrafish. PLoS ONE, 2016, 11, e0166734.	2.5	13
61	Cardiomyocyteâ€specific role of miRâ€24 in promoting cell survival. Journal of Cellular and Molecular Medicine, 2015, 19, 103-112.	3.6	42
62	Improved Generation of Induced Cardiomyocytes Using a Polycistronic Construct Expressing Optimal Ratio of Gata4, Mef2c and Tbx5. Journal of Visualized Experiments, 2015, , .	0.3	29
63	Direct Cardiac Reprogramming: Advances in Cardiac Regeneration. BioMed Research International, 2015, 2015, 1-8.	1.9	11
64	Stoichiometry of Gata4, Mef2c, and Tbx5 Influences the Efficiency and Quality of Induced Cardiac Myocyte Reprogramming. Circulation Research, 2015, 116, 237-244.	4.5	191
65	<i>In vivo</i> cardiac reprogramming using an optimal single polycistronic construct: FigureÂ1. Cardiovascular Research, 2015, 108, 217-219.	3.8	57
66	Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation in zebrafish. Development (Cambridge), 2015, 142, 4080-4091.	2.5	117
67	miR-24 Regulates Intrinsic Apoptosis Pathway in Mouse Cardiomyocytes. PLoS ONE, 2014, 9, e85389.	2.5	25
68	MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells, 2014, 3, 724-750.	4.1	21
69	Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. Stem Cell Reports, 2013, 1, 235-247.	4.8	351
70	Direct Cardiac Reprogramming. Circulation Research, 2013, 113, 915-921.	4.5	41
71	Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nature Protocols, 2013, 8, 1204-1215.	12.0	93
72	Cardiac repair with thymosin β4 and cardiac reprogramming factors. Annals of the New York Academy of Sciences, 2012, 1270, 66-72.	3.8	31

#	Article	IF	CITATIONS
73	IL-15, in synergy with RAE-1É, stimulates TCR-independent proliferation and activation of CD8+ T cells. Oncology Letters, 2012, 3, 472-476.	1.8	2
74	In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 2012, 485, 593-598.	27.8	1,204
75	Probing the polygenic basis of cardiomyopathies in <i>Drosophila</i> . Journal of Cellular and Molecular Medicine, 2012, 16, 972-977.	3.6	19
76	Construction of a plasmid for co-expression of mouse membrane-bound form of IL-15 and RAE-1ε and its biological activity. Plasmid, 2011, 65, 239-245.	1.4	5
77	Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Cell Biology, 2011, 193, 1181-1196.	5.2	74
78	miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. Journal of Experimental Medicine, 2011, 208, 549-560.	8.5	293
79	Partial loss of GATA factor Pannier impairs adult heart function in Drosophila. Human Molecular Genetics, 2009, 18, 3153-3163.	2.9	25
80	Transcription factor neuromancer/TBX20 is required for cardiac function in <i>Drosophila</i> with implications for human heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19833-19838.	7.1	82
81	Saikosaponin Aâ€induced cell death of a human hepatoma cell line (HUHâ€7): The significance of the "subâ€G ₁ peakâ€~ in a DNA histogram. Pathology International, 1995, 45, 207-214.	1.3	31