Christoph Arenz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1251391/publications.pdf

Version: 2024-02-01

		136950	149698
100	3,672	32	56
papers	citations	h-index	g-index
113	113	113	5181
113	113	113	3101
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature, 2010, 463, 549-553.	27.8	425
2	Transformation-Associated Changes in Sphingolipid Metabolism Sensitize Cells to Lysosomal Cell Death Induced by Inhibitors of Acid Sphingomyelinase. Cancer Cell, 2013, 24, 379-393.	16.8	281
3	Structural insights into adiponectin receptors suggest ceramidase activity. Nature, 2017, 544, 120-123.	27.8	168
4	Heat shock protein–based therapy as a potential candidate for treating the sphingolipidoses. Science Translational Medicine, 2016, 8, 355ra118.	12.4	137
5	Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNAâ€induced silencing complex (RISC) components argonauteâ€1, argonauteâ€2, PACT, TARBP1, and TARBP2 ir epithelial skin cancer. Molecular Carcinogenesis, 2012, 51, 916-922.	n 2 . 7	96
6	A Homogenous Assay for Micro RNA Maturation. Angewandte Chemie - International Edition, 2006, 45, 5550-5552.	13.8	86
7	MicroRNAsâ€"Future Drug Targets?. Angewandte Chemie - International Edition, 2006, 45, 5048-5050.	13.8	80
8	Lung Endothelial Ca ²⁺ and Permeability Response to Platelet-Activating Factor Is Mediated by Acid Sphingomyelinase and Transient Receptor Potential Classical 6. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 160-170.	5.6	80
9	CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1614-23.	7.1	80
10	Manumycin A and Its Analogues Are Irreversible Inhibitors of Neutral Sphingomyelinase. ChemBioChem, 2001, 2, 141-143.	2.6	73
11	Potent and Selective Inhibition of Acid Sphingomyelinase by Bisphosphonates. Angewandte Chemie - International Edition, 2009, 48, 7560-7563.	13.8	73
12	Small Molecule Inhibitors of Acid Sphingomyelinase. Cellular Physiology and Biochemistry, 2010, 26, 1-8.	1.6	65
13	Synthesis of the First Selective Irreversible Inhibitor of Neutral Sphingomyelinase. Angewandte Chemie - International Edition, 2000, 39, 1440-1442.	13.8	60
14	Development of an assay for the intermembrane transfer of cholesterol by Niemann-Pick C2 protein. Biological Chemistry, 2007, 388, 617-26.	2.5	60
15	Phosphatidylinositol-3,5-Bisphosphate Is a Potent and Selective Inhibitor of Acid Sphingomyelinase. Biological Chemistry, 2003, 384, 1293-8.	2.5	59
16	Synthesis and biochemical investigation of scyphostatin analogues as inhibitors of neutral sphingomyelinase. Bioorganic and Medicinal Chemistry, 2001, 9, 2901-2904.	3.0	55
17	Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15591-15598.	7.1	55
18	A fluorescence probe for assaying micro RNA maturation. Bioorganic and Medicinal Chemistry, 2008, 16, 49-55.	3.0	54

#	Article	IF	CITATIONS
19	TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells. BMC Cancer, 2014, 14, 74.	2.6	50
20	Amplification of a FRET Probe by Lipid–Water Partition for the Detection of Acid Sphingomyelinase in Live Cells. Angewandte Chemie - International Edition, 2017, 56, 2790-2794.	13.8	47
21	RNA interference: from an ancient mechanism to a state of the art therapeutic application?. Die Naturwissenschaften, 2003, 90, 345-359.	1.6	45
22	Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. Journal of Lipid Research, 2017, 58, 60-71.	4.2	45
23	Platelet extracellular vesicles mediate transfusion-related acute lung injury by imbalancing the sphingolipid rheostat. Blood, 2021, 137, 690-701.	1.4	43
24	Elucidating the chemical structure of native 1-deoxysphingosine. Journal of Lipid Research, 2016, 57, 1194-1203.	4.2	42
25	A Scaffoldâ€Treeâ€Merging Strategy for Prospective Bioactivity Annotation of γâ€Pyrones. Angewandte Chemie - International Edition, 2010, 49, 3666-3670.	13.8	41
26	Imageâ€Based Morphological Profiling Identifies a Lysosomotropic, Ironâ€Sequestering Autophagy Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 5721-5729.	13.8	41
27	Structure of a human intramembrane ceramidase explains enzymatic dysfunction found in leukodystrophy. Nature Communications, 2018, 9, 5437.	12.8	40
28	Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. Journal of Lipid Research, 2020, 61, 896-910.	4.2	39
29	The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration. Frontiers in Immunology, 2017, 8, 1007.	4.8	35
30	Improved Plaque Assay Identifies a Novel Anti-Chlamydia Ceramide Derivative with Altered Intracellular Localization. Antimicrobial Agents and Chemotherapy, 2014, 58, 5537-5546.	3.2	34
31	A series of ceramide analogs modified at the 1-position with potent activity against the intracellular growth of $\langle i \rangle$ Chlamydia trachomatis $\langle i \rangle$. Future Medicinal Chemistry, 2015, 7, 1971-1980.	2.3	34
32	MicroRNA Maturation and Human Disease. Methods in Molecular Biology, 2014, 1095, 11-25.	0.9	34
33	Synthesis of the First Selective Irreversible Inhibitor of Neutral Sphingomyelinase. European Journal of Organic Chemistry, 2001, 2001, 137-140.	2.4	33
34	SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles. Journal of Physical Chemistry Letters, 2018, 9, 6767-6772.	4.6	33
35	Rollingâ€Circle Amplification: Unshared Advantages in miRNA Detection. ChemBioChem, 2009, 10, 1289-1291.	2.6	32
36	Effective inhibition of acid and neutral ceramidases by novel B-13 and LCL-464 analogues. Bioorganic and Medicinal Chemistry, 2013, 21, 874-882.	3.0	32

#	Article	IF	CITATIONS
37	Inhibitors of Ceramidases. Chemistry and Physics of Lipids, 2016, 197, 60-68.	3.2	32
38	Differential-Mobility Spectrometry of 1-Deoxysphingosine Isomers: New Insights into the Gas Phase Structures of Ionized Lipids. Analytical Chemistry, 2018, 90, 5343-5351.	6.5	31
39	Optical Nanosensing of Lipid Accumulation due to Enzyme Inhibition in Live Cells. ACS Nano, 2019, 13, 9363-9375.	14.6	31
40	The cellular ceramide transport protein CERT promotes <i>Chlamydia psittaci</i> infection and controls bacterial sphingolipid uptake. Cellular Microbiology, 2017, 19, e12752.	2.1	30
41	A Fast and Easy Method for Specific Detection of Circular RNA by Rollingâ€Circle Amplification. ChemBioChem, 2020, 21, 793-796.	2.6	30
42	Novel fluorescent ceramide derivatives for probing ceramidase substrate specificity. Bioorganic and Medicinal Chemistry, 2012, 20, 6154-6161.	3.0	28
43	Development of a Novel FRET Probe for the Realâ€Time Determination of Ceramidase Activity. ChemBioChem, 2013, 14, 1049-1052.	2.6	27
44	Isolation and In Silico Anti-SARS-CoV-2 Papain-Like Protease Potentialities of Two Rare 2-Phenoxychromone Derivatives from Artemisia spp Molecules, 2022, 27, 1216.	3.8	27
45	Potent Inhibition of Acid Ceramidase by Novel B-13 Analogues. Journal of Lipids, 2011, 2011, 1-8.	4.8	26
46	Small Molecule Inhibitors of Ceramidases. Cellular Physiology and Biochemistry, 2014, 34, 197-212.	1.6	26
47	Facile Synthesis of the CERT Inhibitor HPAâ€12 and Some Novel Derivatives. Chemistry - an Asian Journal, 2014, 9, 2092-2094.	3.3	26
48	Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L625-L637.	2.9	26
49	Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells. Molecular and Cellular Biology, 2016, 36, 2626-2644.	2.3	25
50	Liposomal FRET Assay Identifies Potent Drugâ€Like Inhibitors of the Ceramide Transport Protein (CERT). Chemistry - A European Journal, 2020, 26, 16616-16621.	3.3	25
51	Labeled chemical biology tools for investigating sphingolipid metabolism, trafficking and interaction with lipids and proteins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1161-1173.	2.4	24
52	Elemental labelling and mass spectrometry for the specific detection of sulfenic acid groups in model peptides: a proof of concept. Analytical and Bioanalytical Chemistry, 2017, 409, 2015-2027.	3.7	24
53	Perspectives in targeting miRNA function. Bioorganic and Medicinal Chemistry, 2013, 21, 6115-6118.	3.0	23
54	Jusanin, a New Flavonoid from Artemisia commutata with an In Silico Inhibitory Potential against the SARS-CoV-2 Main Protease. Molecules, 2022, 27, 1636.	3.8	23

#	Article	IF	CITATIONS
55	Potent Inhibition of Acid Sphingomyelinase by Phosphoinositide Analogues. ChemBioChem, 2009, 10, 2367-2374.	2.6	22
56	Short and Efficient Synthesis of Alkyneâ€Modified Amino Glycoside Building Blocks. European Journal of Organic Chemistry, 2009, 2009, 2788-2794.	2.4	22
57	Resolving Sphingolipid Isomers Using Cryogenic Infrared Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 13638-13642.	13.8	22
58	Sphingolipid-Transporting Proteins as Cancer Therapeutic Targets. International Journal of Molecular Sciences, 2019, 20, 3554.	4.1	21
59	Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects. Molecular Psychiatry, 2021, 26, 7403-7416.	7.9	20
60	Novel amide- and sulfonamide-based aromatic ethanolamines: Effects of various substituents on the inhibition of acid and neutral ceramidases. Bioorganic and Medicinal Chemistry, 2012, 20, 6162-6170.	3.0	19
61	Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
62	FRET probes for measuring sphingolipid metabolizing enzyme activity. Chemistry and Physics of Lipids, 2018, 216, 152-161.	3.2	18
63	Development of carbohydrate-derived inhibitors of acid sphingomyelinase. Bioorganic and Medicinal Chemistry, 2010, 18, 939-944.	3.0	15
64	A Rapid Assay for miRNA Maturation by Using Unmodified preâ€niRNA. ChemBioChem, 2011, 12, 2302-2305.	2.6	15
65	Specific Interaction of Tricyclic Antidepressants with Gold and Silver Nanostructures as Revealed by Combined One- and Two-Photon Vibrational Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 22958-22968.	3.1	15
66	Synthesis and characterization of some atypical sphingoid bases. Bioorganic and Medicinal Chemistry, 2018, 26, 4047-4057.	3.0	15
67	miRNAs as novel therapeutic targets and diagnostic biomarkers for Parkinson's disease: a patent evaluation of WO2014018650. Expert Opinion on Therapeutic Patents, 2014, 24, 1271-1276.	5.0	14
68	Recent advances and novel treatments for sphingolipidoses. Future Medicinal Chemistry, 2017, 9, 1687-1700.	2.3	14
69	Regioselective Diazoâ€Transfer Reaction at the C3â€Position of the 2â€Desoxystreptamine Ring of Neamine Antibiotics. Chemistry - A European Journal, 2013, 19, 9151-9154.	3.3	13
70	A chemo-enzymatic approach to specifically click-modified RNA. Chemical Communications, 2013, 49, 3128.	4.1	12
71	Stereoselective Synthesis of Novel Sphingoid Bases Utilized for Exploring the Secrets of Sphinx. International Journal of Molecular Sciences, 2021, 22, 8171.	4.1	12
72	Tsc3 regulates SPT amino acid choice in Saccharomyces cerevisiae by promoting alanine in the sphingolipid pathway. Journal of Lipid Research, 2018, 59, 2126-2139.	4.2	11

#	Article	IF	CITATIONS
73	A Novel Visible Range FRET Probe for Monitoring Acid Sphingomyelinase Activity in Living Cells. Chemistry - A European Journal, 2020, 26, 5780-5783.	3.3	11
74	Imageâ€Based Morphological Profiling Identifies a Lysosomotropic, Ironâ€Sequestering Autophagy Inhibitor. Angewandte Chemie, 2020, 132, 5770-5778.	2.0	11
75	Identification of Small-Molecule Inhibitors of Neutral Ceramidase (nCDase) via Target-Based High-Throughput Screening. SLAS Discovery, 2021, 26, 113-121.	2.7	9
76	Adult alcohol drinking and emotional tone are mediated by neutral sphingomyelinase during development in males. Cerebral Cortex, 2023, 33, 844-864.	2.9	9
77	Eine durch Lipidâ€Wasserâ€Trennung verstÃrkte FRETâ€Sonde zur Detektion der Sauren Sphingomyelinase in lebenden Zellen. Angewandte Chemie, 2017, 129, 2834-2838.	2.0	8
78	Novel Drugs Targeting Sphingolipid Metabolism. Handbook of Experimental Pharmacology, 2013, , 187-196.	1.8	8
79	MicroRNA-145-targeted drug and its preventive effect on pulmonary arterial hypertension (patent) Tj ETQq $1\ 1\ 0$.	784314 rş 5.0	gBT/Overloc
80	A Rapid and Versatile Assay for Ago2â€Mediated Cleavage by Using Branched Rolling Circle Amplification. ChemBioChem, 2016, 17, 304-307.	2.6	7
81	Monitoring Dicerâ€Mediated miRNAâ€21 Maturation and Ago2 Loading by a Dualâ€Colour FIT PNA Probe Set. ChemBioChem, 2020, 21, 2527-2532.	2.6	6
82	Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Frontiers in Bioengineering and Biotechnology, 2021, 9, 676900.	4.1	6
83	1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Developmental Cell, 2021, 56, 3128-3145.e15.	7.0	6
84	Canonical and 1-Deoxy(methyl) Sphingoid Bases: Tackling the Effect of the Lipid Structure on Membrane Biophysical Properties. Langmuir, 2020, 36, 6007-6016.	3.5	5
85	Synthesis and characterization of a new two photon excitable acid sphingomyelinase FRET probe. Bioorganic and Medicinal Chemistry, 2021, 44, 116303.	3.0	5
86	A photocaged inhibitor of acid sphingomyelinase. Chemical Communications, 2020, 56, 14885-14888.	4.1	5
87	Fiveâ€, Four―and Threeâ€Dentate Europium Chelates for Anion Sensing and Their Applicability to Enzymatic Dephosphorylation Reactions. ChemistrySelect, 2018, 3, 12430-12439.	1.5	4
88	The long chain base unsaturation has a stronger impact on 1-deoxy(methyl)-sphingolipids biophysical properties than the structure of its C1 functional group. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183628.	2.6	4
89	DNA Made of Purines Only. Chemistry and Biology, 2007, 14, 467-469.	6.0	3
90	Discovery and mechanism of action of small molecule inhibitors of ceramidases. Angewandte Chemie, 0, , .	2.0	3

#	Article	IF	CITATIONS
91	Stimulation of the EP ₃ receptor causes lung edema by activation of TRPC6 in pulmonary endothelial cells. European Respiratory Journal, 2022, , 2102635.	6.7	3
92	RNA Interference: Analyzing the Function of Glycoproteins and Glycosylating Proteins in Mammalian Cells. Methods in Enzymology, 2003, 363, 173-190.	1.0	1
93	Unterscheidung von isomeren Sphingolipiden mittels kryogener Infrarotspektroskopie. Angewandte Chemie, 2020, 132, 13740-13744.	2.0	1
94	Detection of microRNA Maturation Using Unmodified pre-microRNA and Branched Rolling Circle Amplification. Methods in Molecular Biology, 2014, 1095, 109-119.	0.9	1
95	Biochemie und Molekularbiologie 2005. Nachrichten Aus Der Chemie, 2006, 54, 265-275.	0.0	O
96	Organische Chemie 2016. Nachrichten Aus Der Chemie, 2017, 65, 266-304.	0.0	0
97	Trendbericht Organische Chemie 2017. Nachrichten Aus Der Chemie, 2018, 66, 249-280.	0.0	O
98	Innentitelbild: Unterscheidung von isomeren Sphingolipiden mittels kryogener Infrarotspektroskopie (Angew. Chem. 32/2020). Angewandte Chemie, 2020, 132, 13226-13226.	2.0	0
99	Lung endothelial Ca 2+ and permeability response to PAF is mediated by TRPC6. FASEB Journal, 2012, 26, .	0.5	0
100	Assaying Dicer-Mediated miRNA Maturation by Means of Fluorescent Substrates. Methods in Molecular Biology, 2014, 1095, 95-102.	0.9	0