Brenda M Ogle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1251306/publications.pdf

Version: 2024-02-01

43 papers

2,051 citations

279798 23 h-index 265206 42 g-index

46 all docs

46 docs citations

46 times ranked

3289 citing authors

#	Article	IF	CITATIONS
1	Biological implications of cell fusion. Nature Reviews Molecular Cell Biology, 2005, 6, 567-575.	37.0	284
2	Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold. Circulation Research, 2017, 120, 1318-1325.	4.5	254
3	In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 2020, 127, 207-224.	4.5	174
4	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342ps13.	12.4	138
5	3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nature Methods, 2013, 10, 861-864.	19.0	91
6	Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterials Research, 2016, 20, 27.	6.9	77
7	B Cell-Dependent TCR Diversification. Journal of Immunology, 2004, 172, 4709-4716.	0.8	7 5
8	Apoptosisâ€induced cancer cell fusion: a mechanism of breast cancer metastasis. FASEB Journal, 2015, 29, 4036-4045.	0.5	72
9	From Microscale Devices to 3D Printing. Circulation Research, 2017, 120, 150-165.	4.5	71
10	Spontaneous fusion of cells between species yields transdifferentiation and retroviral transfer in vivo. FASEB Journal, 2004, 18, 548-550.	0.5	70
11	Spatial and Temporal Analysis of Extracellular Matrix Proteins in the Developing Murine Heart: A Blueprint for Regeneration. Tissue Engineering - Part A, 2013, 19, 1132-1143.	3.1	65
12	Single-Cell RNA-Seq of Bone Marrow-Derived Mesenchymal Stem Cells Reveals Unique Profiles of Lineage Priming. PLoS ONE, 2015, 10, e0136199.	2.5	61
13	Heterogeneous Differentiation of Human Mesenchymal Stem Cells in Response to Extended Culture in Extracellular Matrices. Tissue Engineering - Part A, 2009, 15, 3911-3922.	3.1	54
14	Effacing of the T Cell Compartment by Cardiac Transplantation in Infancy. Journal of Immunology, 2006, 176, 1962-1967.	0.8	50
15	3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors. Advanced Materials Technologies, 2018, 3, 1700235.	5.8	50
16	An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Scientific Reports, 2015, 5, 18705.	3.3	49
17	Cardiac Fibroblast-Derived 3D Extracellular Matrix Seeded with Mesenchymal Stem Cells as a Novel Device to Transfer Cells to the Ischemic Myocardium. Cardiovascular Engineering and Technology, 2014, 5, 119-131.	1.6	48
18	Mesenchymal Stem Cell Interactions with 3D ECM Modules Fabricated via Multiphoton Excited Photochemistry. Biomacromolecules, 2012, 13, 2917-2925.	5.4	35

#	Article	IF	CITATIONS
19	ECM-Incorporated Hydrogels Cross-Linked via Native Chemical Ligation To Engineer Stem Cell Microenvironments. Biomacromolecules, 2013, 14, 3102-3111.	5.4	30
20	Tracking Fusion of Human Mesenchymal Stem Cells After Transplantation to the Heart. Stem Cells Translational Medicine, 2015, 4, 685-694.	3.3	29
21	Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning. Optics Express, 2013, 21, 25346.	3.4	28
22	The Role of Vascular Smooth Muscle Cell Integrins in the Compaction and Mechanical Strengthening of a Tissue-Engineered Blood Vessel. Tissue Engineering, 1999, 5, 387-402.	4.6	27
23	Heterogeneous Differentiation of Human Mesenchymal Stem Cells in 3D Extracellular Matrix Composites. BioResearch Open Access, 2016, 5, 37-48.	2.6	27
24	Advanced imaging approaches for regenerative medicine: Emerging technologies for monitoring stem cell fate in vitro and in vivo. Biotechnology Journal, 2015, 10, 1515-1528.	3.5	21
25	Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion. Scientific Reports, 2016, 6, 23270.	3.3	20
26	Manipulation of Remodeling Pathways to Enhance the Mechanical Properties of a Tissue Engineered Blood Vessel. Journal of Biomechanical Engineering, 2002, 124, 724-733.	1.3	19
27	Body builder: from synthetic cells to engineered tissues. Current Opinion in Cell Biology, 2018, 54, 37-42.	5.4	15
28	Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Engineering - Part C: Methods, 2015, 21, 995-1004.	2.1	13
29	Cardiac Extracellular Matrix Modification as a Therapeutic Approach. Advances in Experimental Medicine and Biology, 2018, 1098, 131-150.	1.6	12
30	Imaging the Cardiac Extracellular Matrix. Advances in Experimental Medicine and Biology, 2018, 1098, 21-44.	1.6	12
31	Implementing Biological Pacemakers: Design Criteria for Successful Transition From Concept to Clinic. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009957.	4.8	10
32	An <i>In Vitro </i> Inverted Vertical Invasion Assay to Avoid Manipulation of Rare or Sensitive Cell Types. Journal of Cancer, 2016, 7, 2333-2340.	2.5	9
33	Laminin 411 mediates endothelial specification via multiple signaling axes that converge on \hat{l}^2 -catenin. Stem Cell Reports, 2022, 17, 569-583.	4.8	9
34	A 3D <i>in vitro</i> model of the dermoepidermal junction amenable to mechanical testing. Journal of Biomedical Materials Research - Part A, 2018, 106, 3231-3238.	4.0	8
35	Myosin Heavy Chain Converter Domain Mutations Drive Early-Stage Changes in Extracellular Matrix Dynamics in Hypertrophic Cardiomyopathy. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	8
36	Developmental lineage of human pluripotent stem cellâ€derived cardiac fibroblasts affects their functional phenotype. FASEB Journal, 2021, 35, e21799.	0.5	6

3

#	Article	IF	CITATIONS
37	Viral-mediated fusion of mesenchymal stem cells with cells of the infarcted heart hinders healing via decreased vascularization and immune modulation. Scientific Reports, 2016, 6, 20283.	3.3	5
38	Editorial: Stem cell engineering – discovery, diagnostics and therapies. Biotechnology Journal, 2013, 8, 390-391.	3.5	4
39	Simple Monolayer Differentiation of Murine Cardiomyocytes via Nutrient Deprivation-Mediated Activation of \hat{l}^2 -Catenin. Stem Cell Reviews and Reports, 2016, 12, 731-743.	5.6	2
40	Developmental Pathways Pervade Stem Cell Responses to Evolving Extracellular Matrices of 3D Bioprinted Microenvironments. Stem Cells International, 2018, 2018, 1-15.	2.5	2
41	Kinases of the Focal Adhesion Complex Contribute to Cardiomyocyte Specification. International Journal of Molecular Sciences, 2021, 22, 10430.	4.1	2
42	Moving Upwards: A Simple and Flexible In Vitro Three-dimensional Invasion Assay Protocol. Journal of Visualized Experiments, 2018, , .	0.3	1
43	Bioprinting: 3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors (Adv.) Tj ETQq	1 1 0.7843 5.8	14 rgBT /Overl