Roberta Visconti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1251136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. Journal of Experimental and Clinical Cancer Research, 2016, 35, 153.	3.5	241
2	Inhibition of Th1 Immune Response by Glucocorticoids: Dexamethasone Selectively Inhibits IL-12-Induced Stat4 Phosphorylation in T Lymphocytes. Journal of Immunology, 2000, 164, 1768-1774.	0.4	228
3	Signaling by Type I and II cytokine receptors: ten years after. Current Opinion in Immunology, 2001, 13, 363-373.	2.4	192
4	STAT4 serine phosphorylation is critical for IL-12-induced IFN-Â production but not for cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12281-12286.	3.3	192
5	Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFκB p65 protein expression. Oncogene, 1997, 15, 1987-1994.	2.6	165
6	Positive Effects of Glucocorticoids on T Cell Function by Up-Regulation of IL-7 Receptor $\hat{l}\pm$. Journal of Immunology, 2002, 168, 2212-2218.	0.4	142
7	Importance of the MKK6/p38 pathway for interleukin-12–induced STAT4 serine phosphorylation and transcriptional activity. Blood, 2000, 96, 1844-1852.	0.6	116
8	Signalling of the Ret receptor tyrosine kinase through the c-Jun NH2-terminal protein kinases (JNKs): evidence for a divergence of the ERKs and JNKs pathways induced by Ret. Oncogene, 1998, 16, 2435-2445.	2.6	112
9	New insights on oxidative stress in cancer. Current Opinion in Drug Discovery & Development, 2009, 12, 240-5.	1.9	110
10	Rat Protein Tyrosine Phosphatase η Suppresses the Neoplastic Phenotype of Retrovirally Transformed Thyroid Cells through the Stabilization of p27 Kip1. Molecular and Cellular Biology, 2000, 20, 9236-9246.	1.1	99
11	The Docking Molecule Gab2 Is Induced by Lymphocyte Activation and Is Involved in Signaling by Interleukin-2 and Interleukin-15 but Not Other Common γ Chain-using Cytokines. Journal of Biological Chemistry, 2000, 275, 26959-26966.	1.6	75
12	Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nature Immunology, 2000, 1, 17-19.	7.0	59
13	The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene, 2001, 20, 599-608.	2.6	57
14	Cloning and molecular characterization of a novel gene strongly induced by the adenovirus E1A gene in rat thyroid cells. Oncogene, 2003, 22, 1087-1097.	2.6	56
15	Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nature Communications, 2012, 3, 894.	5.8	54
16	The Platelet-derived Growth Factor Controls c-myc Expression through a JNK- and AP-1-dependent Signaling Pathway. Journal of Biological Chemistry, 2003, 278, 50024-50030.	1.6	53
17	USP7 inhibitors, downregulating CCDC6, sensitize lung neuroendocrine cancer cells to PARP-inhibitor drugs. Lung Cancer, 2017, 107, 41-49.	0.9	51
18	The between Now and Then of Lung Cancer Chemotherapy and Immunotherapy. International Journal of Molecular Sciences, 2017, 18, 1374.	1.8	47

ROBERTA VISCONTI

#	Article	IF	CITATIONS
19	New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 91.	3.5	45
20	Molecular biology of the MEN2 gene. Journal of Internal Medicine, 1998, 243, 505-508.	2.7	42
21	FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget, 2015, 6, 12697-12709.	0.8	42
22	Fighting tubulin-targeting anticancer drug toxicity and resistance. Endocrine-Related Cancer, 2017, 24, T107-T117.	1.6	42
23	New therapeutic perspectives in <scp>CCDC</scp> 6 deficient lung cancer cells. International Journal of Cancer, 2015, 136, 2146-2157.	2.3	41
24	The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs. Cell Death and Differentiation, 2015, 22, 1551-1560.	5.0	38
25	Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation. Arthritis Research, 2000, 2, 16.	2.0	37
26	Glial Cell Line-Derived Neurotrophic Factor Differentially Stimulates Ret Mutants Associated with the Multiple Endocrine Neoplasia Type 2 Syndromes and Hirschsprung's Disease1. Endocrinology, 1998, 139, 3613-3619.	1.4	32
27	Exploiting immune-dependent effects of microtubule-targeting agents to improve efficacy and tolerability of cancer treatment. Cell Death and Disease, 2020, 11, 361.	2.7	30
28	Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression. ELife, 2015, 4, .	2.8	30
29	Characterization and Analysis of the ProximalJanus Kinase 3Promoter. Journal of Immunology, 2003, 170, 6057-6064.	0.4	29
30	ATM controls proper mitotic spindle structure. Cell Cycle, 2014, 13, 1091-1100.	1.3	29
31	CCDC6 and USP7 expression levels suggest novel treatment options in high-grade urothelial bladder cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 90.	3.5	29
32	Requirement for proteolysis in spindle assembly checkpoint silencing. Cell Cycle, 2010, 9, 564-569.	1.3	27
33	Retrospective Analysis of Coagulation Factor II Receptor (F2R) Sequence Variation and Coronary Heart Disease in Hypertensive Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1213-1219.	1.1	19
34	The rationale for druggability of CCDC6-tyrosine kinase fusions in lung cancer. Molecular Cancer, 2018, 17, 46.	7.9	19
35	Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations. Cancers, 2019, 11, 819.	1.7	18
36	MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme. International Journal of Molecular Sciences, 2022, 23, 7148.	1.8	18

ROBERTA VISCONTI

#	Article	IF	CITATIONS
37	Molecular aspects of primary immunodeficiencies: lessons from cytokine and other signaling pathways. Journal of Clinical Investigation, 2002, 109, 1261-1269.	3.9	16
38	Analysis of CCDC6 as a novel biomarker for the clinical use of PARP1 inhibitors in malignant pleural mesothelioma. Lung Cancer, 2019, 135, 56-65.	0.9	14
39	Different mutations of the RET gene cause different human tumoral diseases. Biochimie, 1999, 81, 397-402.	1.3	12
40	Only the Substitution of Methionine 918 with a Threonine and Not with Other Residues Activates RET Transforming Potential*. Endocrinology, 1997, 138, 1450-1455.	1.4	10
41	Functional Cloning of Genes Regulating Apoptosis in Neuronal Cells. Methods in Molecular Biology, 2007, 399, 125-131.	0.4	10
42	The end of mitosis from a phosphatase perspective. Cell Cycle, 2013, 12, 17-19.	1.3	9
43	Evaluation of MGMT gene methylation in neuroendocrine neoplasms. Oncology Research, 2021, , .	0.6	9
44	Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells. Cancer Investigation, 2007, 25, 256-266.	0.6	4
45	Sustaining the spindle assembly checkpoint to improve cancer therapy. Molecular and Cellular Oncology, 2016, 3, e1046583.	0.3	2
46	Evidence that PP2A activity is dispensable for spindle assembly checkpoint-dependent control of Cdk1. Oncotarget, 2018, 9, 7312-7321.	0.8	1
47	Glial cell line-derived nenrotrophic factor (GDNF) stimulates ret activity. Rendiconti Lincei, 1997, 8, 139-149.	1.0	0
48	Molecular Basis of Severe Combined Immunodeficiency: Lessons from Cytokine Signaling Pathways. , 0, , 279-305.		0