Roberta Visconti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1251136/publications.pdf

Version: 2024-02-01

201674 223800 2,703 48 27 46 citations h-index g-index papers 49 49 49 4098 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme. International Journal of Molecular Sciences, 2022, 23, 7148.	4.1	18
2	Evaluation of MGMT gene methylation in neuroendocrine neoplasms. Oncology Research, 2021, , .	1.5	9
3	Exploiting immune-dependent effects of microtubule-targeting agents to improve efficacy and tolerability of cancer treatment. Cell Death and Disease, 2020, 11, 361.	6.3	30
4	Analysis of CCDC6 as a novel biomarker for the clinical use of PARP1 inhibitors in malignant pleural mesothelioma. Lung Cancer, 2019, 135, 56-65.	2.0	14
5	Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations. Cancers, 2019, 11, 819.	3.7	18
6	CCDC6 and USP7 expression levels suggest novel treatment options in high-grade urothelial bladder cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 90.	8.6	29
7	New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 91.	8.6	45
8	The rationale for druggability of CCDC6-tyrosine kinase fusions in lung cancer. Molecular Cancer, 2018, 17, 46.	19.2	19
9	Evidence that PP2A activity is dispensable for spindle assembly checkpoint-dependent control of Cdk1. Oncotarget, 2018, 9, 7312-7321.	1.8	1
10	USP7 inhibitors, downregulating CCDC6, sensitize lung neuroendocrine cancer cells to PARP-inhibitor drugs. Lung Cancer, 2017, 107, 41-49.	2.0	51
11	Fighting tubulin-targeting anticancer drug toxicity and resistance. Endocrine-Related Cancer, 2017, 24, T107-T117.	3.1	42
12	The between Now and Then of Lung Cancer Chemotherapy and Immunotherapy. International Journal of Molecular Sciences, 2017, 18, 1374.	4.1	47
13	Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. Journal of Experimental and Clinical Cancer Research, 2016, 35, 153.	8.6	241
14	Sustaining the spindle assembly checkpoint to improve cancer therapy. Molecular and Cellular Oncology, 2016, 3, e1046583.	0.7	2
15	FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget, 2015, 6, 12697-12709.	1.8	42
16	The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs. Cell Death and Differentiation, 2015, 22, 1551-1560.	11.2	38
17	New therapeutic perspectives in <scp>CCDC</scp> 6 deficient lung cancer cells. International Journal of Cancer, 2015, 136, 2146-2157.	5.1	41
18	Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression. ELife, 2015, 4, .	6.0	30

#	Article	IF	Citations
19	ATM controls proper mitotic spindle structure. Cell Cycle, 2014, 13, 1091-1100.	2.6	29
20	The end of mitosis from a phosphatase perspective. Cell Cycle, 2013, 12, 17-19.	2.6	9
21	Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nature Communications, 2012, 3, 894.	12.8	54
22	Requirement for proteolysis in spindle assembly checkpoint silencing. Cell Cycle, 2010, 9, 564-569.	2.6	27
23	New insights on oxidative stress in cancer. Current Opinion in Drug Discovery & Development, 2009, 12, 240-5.	1.9	110
24	Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells. Cancer Investigation, 2007, 25, 256-266.	1.3	4
25	Functional Cloning of Genes Regulating Apoptosis in Neuronal Cells. Methods in Molecular Biology, 2007, 399, 125-131.	0.9	10
26	Retrospective Analysis of Coagulation Factor II Receptor (F2R) Sequence Variation and Coronary Heart Disease in Hypertensive Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1213-1219.	2.4	19
27	Cloning and molecular characterization of a novel gene strongly induced by the adenovirus E1A gene in rat thyroid cells. Oncogene, 2003, 22, 1087-1097.	5.9	56
28	The Platelet-derived Growth Factor Controls c-myc Expression through a JNK- and AP-1-dependent Signaling Pathway. Journal of Biological Chemistry, 2003, 278, 50024-50030.	3.4	53
29	Characterization and Analysis of the ProximalJanus Kinase 3Promoter. Journal of Immunology, 2003, 170, 6057-6064.	0.8	29
30	STAT4 serine phosphorylation is critical for IL-12-induced IFN-Â production but not for cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12281-12286.	7.1	192
31	Positive Effects of Glucocorticoids on T Cell Function by Up-Regulation of IL-7 Receptor α. Journal of Immunology, 2002, 168, 2212-2218.	0.8	142
32	Molecular aspects of primary immunodeficiencies: lessons from cytokine and other signaling pathways. Journal of Clinical Investigation, 2002, 109, 1261-1269.	8.2	16
33	Signaling by Type I and II cytokine receptors: ten years after. Current Opinion in Immunology, 2001, 13, 363-373.	5.5	192
34	The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene, 2001, 20, 599-608.	5.9	57
35	Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nature Immunology, 2000, 1, 17-19.	14.5	59
36	Importance of the MKK6/p38 pathway for interleukin-12–induced STAT4 serine phosphorylation and transcriptional activity. Blood, 2000, 96, 1844-1852.	1.4	116

#	Article	IF	CITATIONS
37	Inhibition of Th1 Immune Response by Glucocorticoids: Dexamethasone Selectively Inhibits IL-12-Induced Stat4 Phosphorylation in T Lymphocytes. Journal of Immunology, 2000, 164, 1768-1774.	0.8	228
38	Rat Protein Tyrosine Phosphatase \hat{I} - Suppresses the Neoplastic Phenotype of Retrovirally Transformed Thyroid Cells through the Stabilization of p27 Kip1. Molecular and Cellular Biology, 2000, 20, 9236-9246.	2.3	99
39	Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation. Arthritis Research, 2000, 2, 16.	2.0	37
40	The Docking Molecule Gab2 Is Induced by Lymphocyte Activation and Is Involved in Signaling by Interleukin-2 and Interleukin-15 but Not Other Common \hat{I}^3 Chain-using Cytokines. Journal of Biological Chemistry, 2000, 275, 26959-26966.	3.4	75
41	Different mutations of the RET gene cause different human tumoral diseases. Biochimie, 1999, 81, 397-402.	2.6	12
42	Signalling of the Ret receptor tyrosine kinase through the c-Jun NH2-terminal protein kinases (JNKs): evidence for a divergence of the ERKs and JNKs pathways induced by Ret. Oncogene, 1998, 16, 2435-2445.	5.9	112
43	Molecular biology of the MEN2 gene. Journal of Internal Medicine, 1998, 243, 505-508.	6.0	42
44	Glial Cell Line-Derived Neurotrophic Factor Differentially Stimulates Ret Mutants Associated with the Multiple Endocrine Neoplasia Type 2 Syndromes and Hirschsprung's Disease1. Endocrinology, 1998, 139, 3613-3619.	2.8	32
45	Only the Substitution of Methionine 918 with a Threonine and Not with Other Residues Activates RET Transforming Potential*. Endocrinology, 1997, 138, 1450-1455.	2.8	10
46	Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFκB p65 protein expression. Oncogene, 1997, 15, 1987-1994.	5.9	165
47	Glial cell line-derived nenrotrophic factor (GDNF) stimulates ret activity. Rendiconti Lincei, 1997, 8, 139-149.	2.2	0
48	Molecular Basis of Severe Combined Immunodeficiency: Lessons from Cytokine Signaling Pathways. , 0, , 279-305.		0