Liping Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1250618/publications.pdf

Version: 2024-02-01

57 papers	3,844 citations	34 h-index	143943 57 g-index
57 all docs	57 docs citations	57 times ranked	4590 citing authors

#	Article	IF	CITATIONS
1	A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. Journal of the American Chemical Society, 2015, 137, 4900-4903.	6.6	288
2	Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy. Journal of the American Chemical Society, 2013, 135, 18644-18650.	6.6	229
3	DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nature Nanotechnology, 2017, 12, 453-459.	15.6	226
4	A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy. Nano Letters, 2015, 15, 457-463.	4.5	209
5	A Targeted, Self-Delivered, and Photocontrolled Molecular Beacon for mRNA Detection in Living Cells. Journal of the American Chemical Society, 2013, 135, 12952-12955.	6.6	185
6	Molecular Recognition-Based DNA Nanoassemblies on the Surfaces of Nanosized Exosomes. Journal of the American Chemical Society, 2017, 139, 5289-5292.	6.6	175
7	Cell Membrane-Anchored Biosensors for Real-Time Monitoring of the Cellular Microenvironment. Journal of the American Chemical Society, 2014, 136, 13090-13093.	6.6	142
8	Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nature Protocols, 2015, 10, 1508-1524.	5.5	141
9	Cell-Membrane-Anchored DNA Nanoplatform for Programming Cellular Interactions. Journal of the American Chemical Society, 2019, 141, 18013-18020.	6.6	136
10	Aptamer-Functionalized Exosomes: Elucidating the Cellular Uptake Mechanism and the Potential for Cancer-Targeted Chemotherapy. Analytical Chemistry, 2019, 91, 2425-2430.	3.2	130
11	Molecular Elucidation of Disease Biomarkers at the Interface of Chemistry and Biology. Journal of the American Chemical Society, 2017, 139, 2532-2540.	6.6	119
12	ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chemical Science, 2018, 9, 7505-7509.	3.7	110
13	Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids. Analytical Chemistry, 2015, 87, 11714-11720.	3.2	106
14	Self-Assembled DNA Immunonanoflowers as Multivalent CpG Nanoagents. ACS Applied Materials & Interfaces, 2015, 7, 24069-24074.	4.0	101
15	Modulating Aptamer Specificity with pH-Responsive DNA Bonds. Journal of the American Chemical Society, 2018, 140, 13335-13339.	6.6	97
16	In Vivo Monocyte/Macrophage-Hitchhiked Intratumoral Accumulation of Nanomedicines for Enhanced Tumor Therapy. Journal of the American Chemical Society, 2020, 142, 382-391.	6.6	97
17	Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Analytical Chemistry, 2021, 93, 3325-3330.	3.2	97
18	Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Research, 2015, 8, 3447-3460.	5.8	95

#	Article	IF	Citations
19	A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nature Chemistry, 2015, 7, 835-841.	6.6	95
20	Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery. Nanoscale, 2016, 8, 8600-8606.	2.8	78
21	DNA-Based Dynamic Mimicry of Membrane Proteins for Programming Adaptive Cellular Interactions. Journal of the American Chemical Society, 2021, 143, 4585-4592.	6.6	78
22	Integrating DNA Nanotechnology with Aptamers for Biological and Biomedical Applications. Matter, 2021, 4, 461-489.	5.0	64
23	Nucleic acid-functionalized transition metal nanosheets for biosensing applications. Biosensors and Bioelectronics, 2017, 89, 201-211.	5.3	62
24	A membrane-anchored aptamer sensor for probing IFN \hat{I}^3 secretion by single cells. Chemical Communications, 2017, 53, 8066-8069.	2.2	58
25	Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications. Sensors, 2017, 17, 1736.	2.1	51
26	Aptamer Displacement Reaction from Live-Cell Surfaces and Its Applications. Journal of the American Chemical Society, 2019, 141, 17174-17179.	6.6	51
27	Cancer biomarker discovery using DNA aptamers. Analyst, The, 2016, 141, 461-466.	1.7	49
28	Using modified aptamers for site specific protein–aptamer conjugations. Chemical Science, 2016, 7, 2157-2161.	3.7	46
29	A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New Journal of Chemistry, 2013, 37, 3998.	1.4	45
30	Aptamer-based optical manipulation of protein subcellular localization in cells. Nature Communications, 2020, 11, 1347.	5.8	44
31	Endolysosomalâ€Escape Nanovaccines through Adjuvantâ€Induced Tumor Antigen Assembly for Enhanced Effector CD8 ⁺ T Cell Activation. Small, 2018, 14, e1703539.	5.2	38
32	DNA Nanostructure-Programmed Cell Entry via Corner Angle-Mediated Molecular Interaction with Membrane Receptors. Nano Letters, 2021, 21, 6946-6951.	4.5	37
33	Cooperative Amplification-Based Electrochemical Sensor for the Zeptomole Detection of Nucleic Acids. Analytical Chemistry, 2013, 85, 8225-8231.	3.2	36
34	A membrane-anchored fluorescent probe for detecting K ⁺ in the cell microenvironment. Chemical Communications, 2016, 52, 4679-4682.	2.2	36
35	Nuclease-resistant synthetic drug-DNA adducts: programmable drug-DNA conjugation for targeted anticancer drug delivery. NPG Asia Materials, 2015, 7, e169-e169.	3.8	34
36	Generalized Preparation of Two-Dimensional Quasi-nanosheets via Self-assembly of Nanoparticles. Journal of the American Chemical Society, 2019, 141, 1725-1734.	6.6	29

#	Article	IF	CITATIONS
37	Fluorinated DNA Micelles: Synthesis and Properties. Analytical Chemistry, 2018, 90, 6843-6850.	3.2	24
38	Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells. ACS Applied Materials & Earny; Interfaces, 2020, 12, 37845-37850.	4.0	22
39	Aligner-mediated cleavage of nucleic acids and its application to isothermal exponential amplification. Chemical Science, 2018, 9, 3050-3055.	3.7	19
40	Aptamers Selected by Cell-SELEX for Molecular Imaging. Journal of Molecular Evolution, 2015, 81, 162-171.	0.8	17
41	Sensitive and selective electrochemical DNA sensor for the analysis of cancer-related single nucleotide polymorphism. New Journal of Chemistry, 2014, 38, 4711-4715.	1.4	16
42	DNA-Capped Silver Nanoflakes as Fluorescent Nanosensor for Highly Sensitive Imaging of Endogenous H ₂ S in Cell Division Cycles. Analytical Chemistry, 2019, 91, 15404-15410.	3.2	16
43	Engineering a customized nanodrug delivery system at the cellular level for targeted cancer therapy. Science China Chemistry, 2018, 61, 497-504.	4.2	15
44	Discovery of the unique self-assembly behavior of terminal suckers-contained dsDNA onto GNP and novel "light-up―colorimetric assay of nucleic acids. Biosensors and Bioelectronics, 2015, 64, 292-299.	5.3	13
45	Functional nucleic acid-based cell imaging and manipulation. Science China Chemistry, 2021, 64, 1817-1825.	4.2	13
46	New Insights from Chemical Biology: Molecular Basis of Transmission, Diagnosis, and Therapy of SARS-CoV-2. CCS Chemistry, 2021, 3, 1501-1528.	4.6	12
47	Engineering Aptamers with Selectively Enhanced Biostability in the Tumor Microenvironment. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
48	Identification of Vigilin as a Potential Ischemia Biomarker by Brain Slice-Based Systematic Evolution of Ligands by Exponential Enrichment. Analytical Chemistry, 2019, 91, 6675-6681.	3.2	10
49	Programmable pH-Responsive DNA Nanosensors for Imaging Exocytosis and Retrieval of Synaptic Vesicles. Analytical Chemistry, 2020, 92, 3620-3626.	3.2	10
50	A Facile Process for the Preparation of Threeâ€Dimensional Hollow Zn(OH) ₂ Nanoflowers at Room Temperature. Chemistry - A European Journal, 2016, 22, 11143-11147.	1.7	7
51	Comprehensive Regression Model for Dissociation Equilibria of Cell-Specific Aptamers. Analytical Chemistry, 2018, 90, 10487-10493.	3.2	6
52	Engineering G-quadruplex aptamer to modulate its binding specificity. National Science Review, 2021, 8, nwaa202.	4.6	5
53	DNA-Based Molecular Engineering of the Cell Membrane. Membranes, 2022, 12, 111.	1.4	4
54	Aptamer-Based Analysis and Manipulation of the Protein Activity in Living Cells. Analytical Chemistry, 2022, 94, 4352-4358.	3.2	4

LIPING QIU

#	Article	IF	CITATIONS
55	A molecular recognition-activatable DNA nanofirecracker enables signal-enhanced imaging in living cells. Chemical Communications, 2020, 56, 3131-3134.	2.2	3
56	Functional Nucleic Acid-Based Live-Cell Fluorescence Imaging. Frontiers in Chemistry, 2020, 8, 598013.	1.8	2
57	Aptamer-based Cell Recognition and Detection. Current Analytical Chemistry, 2022, 18, 612-621.	0.6	1