
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1250151/publications.pdf Version: 2024-02-01



LISE LONKEDS

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Quantitative Gait Analysis in Parkinson's Disease: Comparison With a Healthy Control Group. Archives of Physical Medicine and Rehabilitation, 2005, 86, 1007-1013.                                                                          | 0.9 | 270       |
| 2  | Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait and Posture, 2009, 29, 129-137.                                                                     | 1.4 | 180       |
| 3  | Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies. Journal of the Royal Society Interface, 2019, 16, 20190402.          | 3.4 | 158       |
| 4  | A randomized study of combined botulinum toxin type A and casting in the ambulant child with cerebral palsy using objective outcome measures. European Journal of Neurology, 2001, 8, 75-87.                                                | 3.3 | 130       |
| 5  | Evaluation of the effect of backpack load and position during standing and walking using biomechanical, physiological and subjective measures. Ergonomics, 2007, 50, 728-742.                                                               | 2.1 | 130       |
| 6  | Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. Journal of Biomechanics, 2008, 41, 3390-3398.                                                                                | 2.1 | 115       |
| 7  | Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: Effect on hip moment arm lengths. Gait and Posture, 2008, 28, 358-365.                                   | 1.4 | 113       |
| 8  | Subject-specific hip geometry affects predicted hip joint contact forces during gait. Journal of Biomechanics, 2008, 41, 1243-1252.                                                                                                         | 2.1 | 101       |
| 9  | Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait and Posture, 2008, 28, 640-648.                                             | 1.4 | 93        |
| 10 | Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. Journal of Biomechanics, 2010, 43, 1876-1883.                                                         | 2.1 | 93        |
| 11 | Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait. Journal of Biomechanics, 2009, 42, 1246-1251.                                                                         | 2.1 | 91        |
| 12 | Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee<br>function after ACL reconstruction: a systematic review and meta-analysis. British Journal of Sports<br>Medicine, 2020, 54, 139-153. | 6.7 | 88        |
| 13 | Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Journal of Biomechanics, 2008, 41, 3405-3413.                                  | 2.1 | 81        |
| 14 | In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. Journal of Orthopaedic Surgery and Research, 2009, 4, 10.                                                          | 2.3 | 78        |
| 15 | The Contribution of Step Characteristics to Sprint Running Performance in High-Level Male and Female Athletes. Journal of Strength and Conditioning Research, 2013, 27, 116-124.                                                            | 2.1 | 78        |
| 16 | The complementary role of the plantarflexors, hamstrings and gluteus maximus in the control of stance limb stability during gait. Gait and Posture, 2003, 17, 264-272.                                                                      | 1.4 | 76        |
| 17 | Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running. Journal of<br>Bone and Mineral Research, 2015, 30, 1431-1440.                                                                                     | 2.8 | 76        |
| 18 | The flexion synergy, mother of all synergies and father of new models of gait. Frontiers in<br>Computational Neuroscience, 2013, 7, 14.                                                                                                     | 2.1 | 73        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Knee Joint Loading in Healthy Adults During Functional Exercises: Implications for Rehabilitation<br>Guidelines. Journal of Orthopaedic and Sports Physical Therapy, 2018, 48, 162-173.                                        | 3.5 | 71        |
| 20 | Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis. Journal of Biomechanics, 2013, 46, 2186-2193.                                                           | 2.1 | 68        |
| 21 | From block clearance to sprint running: Characteristics underlying an effective transition. Journal of Sports Sciences, 2013, 31, 137-149.                                                                                     | 2.0 | 68        |
| 22 | A musculoskeletal model customized for squatting task. Computer Methods in Biomechanics and<br>Biomedical Engineering, 2019, 22, 21-24.                                                                                        | 1.6 | 68        |
| 23 | Characterisation of walking loads by 3D inertial motion tracking. Journal of Sound and Vibration, 2014, 333, 5212-5226.                                                                                                        | 3.9 | 65        |
| 24 | Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait. Frontiers in Computational Neuroscience, 2014, 8, 115.                                                            | 2.1 | 64        |
| 25 | Gait alterations to effectively reduce hip contact forces. Journal of Orthopaedic Research, 2015, 33, 1094-1102.                                                                                                               | 2.3 | 63        |
| 26 | Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation<br>during gait in pediatric subjects with increased femoral anteversion. Journal of Biomechanics, 2011,<br>44, 1346-1353. | 2.1 | 62        |
| 27 | A physiology based inverse dynamic analysis of human gait: potential and perspectives. Computer<br>Methods in Biomechanics and Biomedical Engineering, 2009, 12, 563-574.                                                      | 1.6 | 61        |
| 28 | Knee contact forces are not altered in early knee osteoarthritis. Gait and Posture, 2016, 45, 115-120.                                                                                                                         | 1.4 | 61        |
| 29 | Calculating gait kinematics using MR-based kinematic models. Gait and Posture, 2011, 33, 158-164.                                                                                                                              | 1.4 | 60        |
| 30 | Atlas-based non-rigid image registration to automatically define line-of-action muscle models: A validation study. Journal of Biomechanics, 2009, 42, 565-572.                                                                 | 2.1 | 58        |
| 31 | Gait characteristics and lower limb muscle strength in women with early and established knee osteoarthritis. Clinical Biomechanics, 2013, 28, 40-47.                                                                           | 1.2 | 58        |
| 32 | Botulinum toxin type A treatment of cerebral palsy: an integrated approach. European Journal of<br>Neurology, 1999, 6, s51.                                                                                                    | 3.3 | 57        |
| 33 | Single event multilevel botulinum toxin type A treatment and surgery: similarities and differences.<br>European Journal of Neurology, 2001, 8, 88-97.                                                                          | 3.3 | 56        |
| 34 | A spasticity model based on feedback from muscle force explains muscle activity during passive stretches and gait in children with cerebral palsy. PLoS ONE, 2018, 13, e0208811.                                               | 2.5 | 56        |
| 35 | EMG-Driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle–Tendon Parameters of the Knee<br>Joint Actuators. IEEE Transactions on Biomedical Engineering, 2017, 64, 2253-2262.                                        | 4.2 | 55        |
| 36 | Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1597-1605.                                     | 4.9 | 55        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. British Journal of Sports Medicine, 2022, 56, 490-498.                                         | 6.7 | 55        |
| 38 | Aberrant pelvis and hip kinematics impair hip loading before and after total hip replacement. Gait and Posture, 2009, 30, 296-302.                                                                                                  | 1.4 | 52        |
| 39 | Single leg hop for distance symmetry masks lower limb biomechanics: time to discuss hop distance as decision criterion for return to sport after ACL reconstruction?. British Journal of Sports Medicine, 2022, 56, 249-256.        | 6.7 | 51        |
| 40 | Arm swing in human walking: What is their drive?. Gait and Posture, 2014, 40, 321-326.                                                                                                                                              | 1.4 | 50        |
| 41 | Test-Retest Reliability of Innovated Strength Tests for Hip Muscles. PLoS ONE, 2013, 8, e81149.                                                                                                                                     | 2.5 | 48        |
| 42 | Control of angular momentum during walking in children with cerebral palsy. Research in<br>Developmental Disabilities, 2011, 32, 2860-2866.                                                                                         | 2.2 | 47        |
| 43 | Hip movement pathomechanics of patients with hip osteoarthritis aim at reducing hip joint loading on the osteoarthritic side. Gait and Posture, 2018, 59, 11-17.                                                                    | 1.4 | 47        |
| 44 | Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 65.                                                               | 4.6 | 47        |
| 45 | Physics-Based Simulations to Predict the Differential Effects of Motor Control and Musculoskeletal<br>Deficits on Gait Dysfunction in Cerebral Palsy: A Retrospective Case Study. Frontiers in Human<br>Neuroscience, 2020, 14, 40. | 2.0 | 46        |
| 46 | Knee Cartilage Thickness, T1ϕand T2 Relaxation Time Are Related to Articular Cartilage Loading in<br>Healthy Adults. PLoS ONE, 2017, 12, e0170002.                                                                                  | 2.5 | 46        |
| 47 | Proprioceptive accuracy in women with early and established knee osteoarthritis and its relation to functional ability, postural control, and muscle strength. Clinical Rheumatology, 2013, 32, 1365-1374.                          | 2.2 | 45        |
| 48 | The study of muscle action during single support and swing phase of gait: clinical relevance of forward simulation techniques. Gait and Posture, 2003, 17, 97-105.                                                                  | 1.4 | 44        |
| 49 | Hip contact force in presence of aberrant bone geometry during normal and pathological gait.<br>Journal of Orthopaedic Research, 2014, 32, 1406-1415.                                                                               | 2.3 | 44        |
| 50 | Muscle optimization techniques impact the magnitude of calculated hip joint contact forces. Journal of Orthopaedic Research, 2015, 33, 430-438.                                                                                     | 2.3 | 44        |
| 51 | Mobile assessment of the lower limb kinematics in healthy persons and in persons with degenerative knee disorders: A systematic review. Gait and Posture, 2018, 59, 229-241.                                                        | 1.4 | 44        |
| 52 | Three-dimensional reaching tasks: Effect of reaching height and width on upper limb kinematics and muscle activity. Gait and Posture, 2010, 32, 500-507.                                                                            | 1.4 | 43        |
| 53 | Gait stability in children with Cerebral Palsy. Research in Developmental Disabilities, 2013, 34, 1689-1699.                                                                                                                        | 2.2 | 43        |
| 54 | Similar muscles contribute to horizontal and vertical acceleration of center of mass in forward and backward walking: implications for neural control. Journal of Neurophysiology, 2012, 107, 3385-3396.                            | 1.8 | 42        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Virtual reconstruction of glenoid bone defects using a statistical shape model. Journal of Shoulder<br>and Elbow Surgery, 2018, 27, 160-166.                                                                                                                  | 2.6 | 42        |
| 56 | Virtual reality balance training for elderly: Similar skiing games elicit different challenges in balance<br>training. Gait and Posture, 2018, 59, 111-116.                                                                                                   | 1.4 | 42        |
| 57 | A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive<br>finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and<br>femoral bone growth. PLoS ONE, 2020, 15, e0235966. | 2.5 | 42        |
| 58 | Transmission of Whole-Body Vibration and Its Effect on Muscle Activation. Journal of Strength and Conditioning Research, 2013, 27, 2533-2541.                                                                                                                 | 2.1 | 40        |
| 59 | SimCP: A Simulation Platform to Predict Gait Performance Following Orthopedic Intervention in Children With Cerebral Palsy. Frontiers in Neurorobotics, 2019, 13, 54.                                                                                         | 2.8 | 40        |
| 60 | A multilevel approach to botulinum toxin type A treatment of the (ilio)psoas in spasticity in cerebral<br>palsy. European Journal of Neurology, 1999, 6, s59-s62.                                                                                             | 3.3 | 39        |
| 61 | Mechanobiological prediction of proximal femoral deformities in children with cerebral palsy.<br>Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 253-262.                                                                              | 1.6 | 39        |
| 62 | Medial knee loading is altered in subjects with early osteoarthritis during gait but not during step-up-and-over task. PLoS ONE, 2017, 12, e0187583.                                                                                                          | 2.5 | 39        |
| 63 | Alterated talar and navicular bone morphology is associated with pes planus deformity: A CTâ€scan<br>study. Journal of Orthopaedic Research, 2013, 31, 282-287.                                                                                               | 2.3 | 38        |
| 64 | Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 244-252.                                                         | 3.1 | 37        |
| 65 | Subject-specific geometrical detail rather than cost function formulation affects hip loading calculation. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1475-1488.                                                                  | 1.6 | 37        |
| 66 | A patient-specific guide for optimizing custom-made glenoid implantation in cases of severe glenoid defects: an inÂvitro study. Journal of Shoulder and Elbow Surgery, 2016, 25, 837-845.                                                                     | 2.6 | 36        |
| 67 | The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy. Gait and Posture, 2018, 65, 213-220.                                                                          | 1.4 | 36        |
| 68 | Longitudinal joint loading in patients before and up to one year after unilateral total hip<br>arthroplasty. Gait and Posture, 2018, 61, 117-124.                                                                                                             | 1.4 | 35        |
| 69 | Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity. Gait and Posture, 2019, 68, 575-582.                                                                     | 1.4 | 35        |
| 70 | Musculo-tendon length and lengthening velocity of rectus femoris in stiff knee gait. Gait and Posture, 2006, 23, 222-229.                                                                                                                                     | 1.4 | 34        |
| 71 | How gravity and muscle action control mediolateral center of mass excursion during slow walking:<br>A simulation study. Gait and Posture, 2014, 39, 91-97.                                                                                                    | 1.4 | 34        |
| 72 | Control of propulsion and body lift during the first two stances of sprint running: a simulation study. Journal of Sports Sciences, 2015, 33, 2016-2024.                                                                                                      | 2.0 | 34        |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait<br>analysis, a new musculoskeletal foot model and a foot finite element model. Gait and Posture, 2018,<br>60, 279-285.                                           | 1.4  | 34        |
| 74 | OpenSim Versus Human Body Model: A Comparison Study for the Lower Limbs During Gait. Journal of Applied Biomechanics, 2018, 34, 496-502.                                                                                                                           | 0.8  | 33        |
| 75 | Generic scaled versus subject-specific models for the calculation of musculoskeletal loading in cerebral palsy gait: Effect of personalized musculoskeletal geometry outweighs the effect of personalized neural control. Clinical Biomechanics, 2021, 87, 105402. | 1.2  | 33        |
| 76 | The effect of muscle weakness on the capability gap during gross motor function: a simulation study supporting design criteria for exoskeletons of the lower limb. BioMedical Engineering OnLine, 2014, 13, 111.                                                   | 2.7  | 32        |
| 77 | Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 78.                                                      | 4.6  | 32        |
| 78 | Subject-specific musculoskeletal modelling in patients before and after total hip arthroplasty.<br>Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1683-1691.                                                                               | 1.6  | 32        |
| 79 | Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. Journal of Biomechanics, 2015, 48, 2116-2123.                                                                                                              | 2.1  | 31        |
| 80 | An EMG-based, muscle driven forward simulation of single support phase of gait. Journal of Biomechanics, 2002, 35, 609-619.                                                                                                                                        | 2.1  | 30        |
| 81 | Use of Computational Modeling to Study Joint Degeneration: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 93.                                                                                                                                   | 4.1  | 30        |
| 82 | A Machine Learning Approach to Estimate Hip and Knee Joint Loading Using a Mobile Phone-Embedded<br>IMU. Frontiers in Bioengineering and Biotechnology, 2020, 8, 320.                                                                                              | 4.1  | 29        |
| 83 | Modulation of gluteus medius activity reflects the potential of the muscle to meet the mechanical demands during perturbed walking. Scientific Reports, 2018, 8, 11675.                                                                                            | 3.3  | 28        |
| 84 | Extended foot-ankle musculoskeletal models for application in movement analysis. Computer Methods<br>in Biomechanics and Biomedical Engineering, 2017, 20, 153-159.                                                                                                | 1.6  | 27        |
| 85 | Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model â€. Sensors, 2017, 17, 671.                                                                                                                                                | 3.8  | 27        |
| 86 | ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone. Science<br>Translational Medicine, 2018, 10, .                                                                                                                        | 12.4 | 27        |
| 87 | Ranking of osteogenic potential of physical exercises in postmenopausal women based on femoral<br>neck strains. PLoS ONE, 2018, 13, e0195463.                                                                                                                      | 2.5  | 27        |
| 88 | The influence of knee joint geometry and alignment on the tibiofemoral load distribution: A computational study. Knee, 2019, 26, 813-823.                                                                                                                          | 1.6  | 27        |
| 89 | The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. Journal of Biomechanics, 2014, 47, 596-601.                                                                                                            | 2.1  | 26        |
| 90 | Performance specification for lower limb orthotic devices. Clinical Biomechanics, 2004, 19, 711-718.                                                                                                                                                               | 1.2  | 25        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | An in vitro approach to the evaluation of foot-ankle kinematics: Performance evaluation of a<br>custom-built gait simulator. Proceedings of the Institution of Mechanical Engineers, Part H: Journal<br>of Engineering in Medicine, 2013, 227, 955-967. | 1.8 | 25        |
| 92  | Quantifying thumb opposition kinematics using dynamic computed tomography. Journal of Biomechanics, 2016, 49, 1994-1999.                                                                                                                                | 2.1 | 25        |
| 93  | Successful Preliminary Walking Experiments on a Transtibial Amputee Fitted with a Powered Prosthesis. Prosthetics and Orthotics International, 2009, 33, 368-377.                                                                                       | 1.0 | 24        |
| 94  | Early periprosthetic bone remodelling around cemented and uncemented custom-made femoral components and their uncemented acetabular cups. Archives of Orthopaedic and Trauma Surgery, 2011, 131, 941-948.                                               | 2.4 | 24        |
| 95  | Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces. Gait and Posture, 2019, 74, 223-230.                                        | 1.4 | 24        |
| 96  | Combined enzymatic degradation of proteoglycans and collagen significantly alters intratissue<br>strains in articular cartilage during cyclic compression. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2019, 98, 383-394.            | 3.1 | 24        |
| 97  | A new method for estimating subjectâ€specific muscle–tendon parameters of the knee joint actuators: a<br>simulation study. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30,<br>969-987.                                 | 2.1 | 22        |
| 98  | Musculoskeletal modelling in dogs: challenges and future perspectives. Veterinary and Comparative<br>Orthopaedics and Traumatology, 2016, 29, 181-187.                                                                                                  | 0.5 | 22        |
| 99  | Mechanical effort predicts the selection of ankle over hip strategies in nonstepping postural responses. Journal of Neurophysiology, 2016, 116, 1937-1945.                                                                                              | 1.8 | 22        |
| 100 | Musculotendon excursion potential, tendon slack and muscle fibre length: the interaction of the canine gastrocnemius muscle and tendon. Journal of Anatomy, 2018, 233, 460-467.                                                                         | 1.5 | 22        |
| 101 | Selective dorsal rhizotomy improves muscle forces during walking in children with spastic cerebral palsy. Clinical Biomechanics, 2019, 65, 26-33.                                                                                                       | 1.2 | 22        |
| 102 | Comparison of lower limb muscle strength between diabetic neuropathic and healthy subjects using OpenSim. Gait and Posture, 2017, 58, 194-200.                                                                                                          | 1.4 | 21        |
| 103 | Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage. Osteoarthritis and Cartilage, 2018, 26, 1699-1709.                                                         | 1.3 | 21        |
| 104 | Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. Journal of Biomechanics, 2020, 98, 109437.                                                                                                    | 2.1 | 21        |
| 105 | Image Based Musculoskeletal Modeling Allows Personalized Biomechanical Analysis of Gait. Lecture<br>Notes in Computer Science, 2006, , 58-66.                                                                                                           | 1.3 | 21        |
| 106 | Muscular effort in multiple sclerosis patients during powered wheelchair manoeuvres. Clinical<br>Biomechanics, 2004, 19, 929-938.                                                                                                                       | 1.2 | 20        |
| 107 | Influence of altered gait patterns on the hip joint contact forces. Computer Methods in Biomechanics<br>and Biomedical Engineering, 2014, 17, 352-359.                                                                                                  | 1.6 | 20        |
| 108 | Differences in knee adduction moment between healthy subjects and patients with osteoarthritis depend on the knee axis definition. Gait and Posture, 2017, 53, 104-109.                                                                                 | 1.4 | 20        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Augmented Ligament Reconstruction Partially Restores Hindfoot and Midfoot Kinematics After<br>Lateral Ligament Ruptures. American Journal of Sports Medicine, 2019, 47, 1921-1930.                                                                          | 4.2 | 20        |
| 110 | In Silico-Enhanced Treatment and Rehabilitation Planning for Patients with Musculoskeletal<br>Disorders: Can Musculoskeletal Modelling and Dynamic Simulations Really Impact Current Clinical<br>Practice?. Applied Sciences (Switzerland), 2020, 10, 7255. | 2.5 | 20        |
| 111 | Forefoot deformation during stance: Does the forefoot collapse during loading?. Gait and Posture, 2014, 39, 40-47.                                                                                                                                          | 1.4 | 19        |
| 112 | Does surgical approach or prosthesis type affect hip joint loading one year after surgery?. Gait and Posture, 2016, 44, 74-82.                                                                                                                              | 1.4 | 19        |
| 113 | Symmetry in Triple Hop Distance Hides Asymmetries in Knee Function After ACL Reconstruction in Athletes at Return to Sports. American Journal of Sports Medicine, 2022, 50, 441-450.                                                                        | 4.2 | 19        |
| 114 | Image based methods to generate subject-specific musculoskeletal models for gait analysis.<br>International Congress Series, 2005, 1281, 62-67.                                                                                                             | 0.2 | 18        |
| 115 | Functional knee axis based on isokinetic dynamometry data: Comparison of two methods, MRI validation, and effect on knee joint kinematics. Journal of Biomechanics, 2011, 44, 2595-2600.                                                                    | 2.1 | 18        |
| 116 | A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a<br>comparative study. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 1093-1102.                                                    | 1.6 | 18        |
| 117 | Computed tomography-based joint locations affect calculation of joint moments during gait when compared to scaling approaches. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1238-1251.                                            | 1.6 | 18        |
| 118 | The role of altered proximal femoral geometry in impaired pelvis stability and hip control during CP gait: A simulation study. Gait and Posture, 2016, 44, 61-67.                                                                                           | 1.4 | 18        |
| 119 | Similar sensorimotor transformations control balance during standing and walking. PLoS<br>Computational Biology, 2021, 17, e1008369.                                                                                                                        | 3.2 | 18        |
| 120 | In vitro analysis of muscle activity illustrates mediolateral decoupling of hind and mid foot bone motion. Gait and Posture, 2013, 38, 56-61.                                                                                                               | 1.4 | 17        |
| 121 | Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study. Journal of Biomechanics, 2015, 48, 4238-4245.                                                                                 | 2.1 | 17        |
| 122 | Automated quantification of glenoid bone defects using 3-dimensional measurements. Journal of<br>Shoulder and Elbow Surgery, 2020, 29, 1050-1058.                                                                                                           | 2.6 | 17        |
| 123 | Dynamic simulation of human motion: numerically efficient inclusion of muscle physiology byÂconvexÂoptimization. Optimization and Engineering, 2008, 9, 213-238.                                                                                            | 2.4 | 16        |
| 124 | The added value of an actuated ankle-foot orthosis to restore normal gait function in patients with spinal cord injury: A systematic review. Journal of Rehabilitation Medicine, 2012, 44, 299-309.                                                         | 1.1 | 16        |
| 125 | Evaluation of predicted knee function for component malrotation in total knee arthroplasty. Medical<br>Engineering and Physics, 2017, 40, 56-64.                                                                                                            | 1.7 | 16        |
| 126 | Performance on Balance Evaluation Systems Test (BESTest) Impacts Health-Related Quality of Life in<br>Adult Spinal Deformity Patients. Spine, 2018, 43, 637-646.                                                                                            | 2.0 | 16        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Functional MRI can detect changes in intratissue strains in a full thickness and critical sized ovine cartilage defect model. Journal of Biomechanics, 2018, 66, 18-25.                                                                            | 2.1 | 16        |
| 128 | The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height. Applied Ergonomics, 2022, 103, 103800.                                                                   | 3.1 | 16        |
| 129 | Estimation of hamstring length at initial contact based on kinematic gait data. Gait and Posture, 2004, 20, 61-66.                                                                                                                                 | 1.4 | 15        |
| 130 | Increased sensory noise and not muscle weakness explains changes in non-stepping postural responses following stance perturbations in healthy elderly. Gait and Posture, 2018, 59, 122-127.                                                        | 1.4 | 15        |
| 131 | Functional assessment of strains around a full-thickness and critical sized articular cartilage defect under compressive loading using MRI. Osteoarthritis and Cartilage, 2018, 26, 1710-1721.                                                     | 1.3 | 15        |
| 132 | 12 Degrees of Freedom Muscle Force Driven Fibril-Reinforced Poroviscoelastic Finite Element Model of the Knee Joint. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 123-133.                                        | 4.9 | 15        |
| 133 | Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects.<br>Gait and Posture, 2013, 38, 739-744.                                                                                                       | 1.4 | 14        |
| 134 | Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation<br>Times Is Related to Local Loading during Walking. Cartilage, 2019, 10, 229-237.                                                                 | 2.7 | 14        |
| 135 | Virtual Reality Balance Games Provide Little Muscular Challenge to Prevent Muscle Weakness in<br>Healthy Older Adults. Games for Health Journal, 2020, 9, 227-236.                                                                                 | 2.0 | 14        |
| 136 | The Effect of Saddle Position on Maximal Power Output and Moment Generating Capacity of Lower<br>Limb Muscles during Isokinetic Cycling. Journal of Applied Biomechanics, 2011, 27, 1-7.                                                           | 0.8 | 13        |
| 137 | Quantifying individual muscle contribution to three-dimensional reaching tasks. Gait and Posture, 2012, 35, 579-584.                                                                                                                               | 1.4 | 12        |
| 138 | Inertial control as novel technique for in vitro gait simulations. Journal of Biomechanics, 2015, 48, 392-395.                                                                                                                                     | 2.1 | 12        |
| 139 | ESB Clinical Biomechanics Award 2020: Pelvis and hip movement strategies discriminate typical and pathological femoral growth – Insights gained from a multi-scale mechanobiological modelling framework. Clinical Biomechanics, 2021, 87, 105405. | 1.2 | 12        |
| 140 | Less hip joint loading only during running rather than walking in elderly compared to young adults.<br>Gait and Posture, 2017, 53, 155-161.                                                                                                        | 1.4 | 11        |
| 141 | Development and validation of a modeling workflow for the generation of image-based,<br>subject-specific thoracolumbar models of spinal deformity. Journal of Biomechanics, 2020, 110, 109946.                                                     | 2.1 | 11        |
| 142 | Specimen-specific tibial kinematics model for in vitro gait simulations. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227, 454-463.                                                   | 1.8 | 10        |
| 143 | Changes in proprioceptive weighting during quiet standing in women with early and established knee osteoarthritis compared to healthy controls. Gait and Posture, 2016, 44, 184-188.                                                               | 1.4 | 10        |
| 144 | Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study. Sports Biomechanics, 2017, 16, 452-462.                                                         | 1.6 | 10        |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Effect of a prehop on the muscle-tendon interaction during vertical jumps. Journal of Applied Physiology, 2018, 124, 1203-1211.                                                                                                                                                  | 2.5 | 10        |
| 146 | Patients With Medial Knee Osteoarthritis Reduce Medial Knee Contact Forces by Altering Trunk<br>Kinematics, Progression Speed, and Stepping Strategy During Stair Ascent and Descent: A Pilot Study.<br>Journal of Applied Biomechanics, 2019, 35, 280-289.                      | 0.8 | 10        |
| 147 | Hip Muscle Forces and Contact Loading During Squatting After Cam-Type FAI Surgery. Journal of Bone<br>and Joint Surgery - Series A, 2020, 102, 34-42.                                                                                                                            | 3.0 | 10        |
| 148 | Inertial Sensor-to-Segment Calibration for Accurate 3D Joint Angle Calculation for Use in OpenSim.<br>Sensors, 2022, 22, 3259.                                                                                                                                                   | 3.8 | 10        |
| 149 | Extrinsic Muscle Forces Affect Ankle Loading Before and After Total Ankle Arthroplasty. Clinical<br>Orthopaedics and Related Research, 2015, 473, 3028-3037.                                                                                                                     | 1.5 | 9         |
| 150 | Gait alterations can reduce the risk of edge loading. Journal of Orthopaedic Research, 2016, 34, 1069-1076.                                                                                                                                                                      | 2.3 | 9         |
| 151 | Subjects with medial and lateral tibiofemoral articular cartilage defects do not alter compartmental<br>loading during walking. Clinical Biomechanics, 2018, 60, 149-156.                                                                                                        | 1.2 | 9         |
| 152 | Botulinum toxin injections minimally affect modelled muscle forces during gait in children with cerebral palsy. Gait and Posture, 2020, 82, 54-60.                                                                                                                               | 1.4 | 9         |
| 153 | Towards the Monitoring of Functional Status in a Free-Living Environment for People with Hip or<br>Knee Osteoarthritis: Design and Evaluation of the JOLO Blended Care App. Sensors, 2020, 20, 6967.                                                                             | 3.8 | 9         |
| 154 | Pre-treatmentÂEMG can be used to model post-treatment muscle coordination during walkingÂin<br>children with cerebral palsy. PLoS ONE, 2020, 15, e0228851.                                                                                                                       | 2.5 | 9         |
| 155 | Movement Quality Parameters during Gait Assessed by a Single Accelerometer in Subjects with<br>Osteoarthritis and Following Total Joint Arthroplasty. Sensors, 2022, 22, 2955.                                                                                                   | 3.8 | 9         |
| 156 | Reliability of 3D Lower Extremity Movement Analysis by Means of Inertial Sensor Technology during<br>Transitional Tasks. Sensors, 2018, 18, 2638.                                                                                                                                | 3.8 | 8         |
| 157 | The Differential Effect of Arm Movements during Gait on the Forward Acceleration of the Centre of<br>Mass in Children with Cerebral Palsy and Typically Developing Children. Frontiers in Human<br>Neuroscience, 2017, 11, 96.                                                   | 2.0 | 7         |
| 158 | Single-event multilevel surgery, but not botulinum toxin injections normalize joint loading in cerebral palsy patients. Clinical Biomechanics, 2020, 76, 105025.                                                                                                                 | 1.2 | 7         |
| 159 | Automated muscle elongation measurement during reverse shoulder arthroplasty planning. Journal of Shoulder and Elbow Surgery, 2021, 30, 561-571.                                                                                                                                 | 2.6 | 7         |
| 160 | Robustness of kinematic weighting and scaling concepts for musculoskeletal simulation. Computer<br>Methods in Biomechanics and Biomedical Engineering, 2017, 20, 720-729.                                                                                                        | 1.6 | 6         |
| 161 | Non-rigid deformation to include subject-specific detail in musculoskeletal models of CP children<br>with proximal femoral deformity and its effect on muscle and contact forces during gait. Computer<br>Methods in Biomechanics and Biomedical Engineering, 2019, 22, 376-385. | 1.6 | 6         |
| 162 | The effect of hip muscle weakness and femoral bony deformities on gait performance. Gait and Posture, 2021, 83, 280-286.                                                                                                                                                         | 1.4 | 6         |

ILSE JONKERS

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Between-Limb Symmetry in ACL and Tibiofemoral Contact Forces in Athletes After ACL Reconstruction and Clearance for Return to Sport. Orthopaedic Journal of Sports Medicine, 2022, 10, 232596712210847.                               | 1.7 | 6         |
| 164 | Sensitivity analysis of hip joint centre estimation based on three-dimensional CT scans. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 539-546.                                                              | 1.6 | 5         |
| 165 | Variation of the clavicle's muscle insertion footprints – a cadaveric study. Scientific Reports, 2019, 9,<br>16293.                                                                                                                   | 3.3 | 5         |
| 166 | A probabilistic method to estimate gait kinetics in the absence of ground reaction force measurements. Journal of Biomechanics, 2019, 96, 109327.                                                                                     | 2.1 | 5         |
| 167 | Subject-specific geometry affects acetabular contact pressure during gait more than subject-specific loading patterns. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 1323-1333.                              | 1.6 | 5         |
| 168 | Computationally Efficient Optimization Method to Quantify the Required Surgical Accuracy for a Ligament Balanced TKA. IEEE Transactions on Biomedical Engineering, 2021, 68, 3273-3280.                                               | 4.2 | 5         |
| 169 | An Extended Dynamometer Setup to Improve the Accuracy of Knee Joint Moment Assessment. IEEE<br>Transactions on Biomedical Engineering, 2013, 60, 1202-1208.                                                                           | 4.2 | 4         |
| 170 | Foot–ankle simulators: A tool to advance biomechanical understanding of a complex anatomical<br>structure. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in<br>Medicine, 2016, 230, 440-449. | 1.8 | 4         |
| 171 | A prospective follow up of age related changes in the subchondral bone density of the talus of healthy Labrador Retrievers. BMC Veterinary Research, 2016, 13, 57.                                                                    | 1.9 | 4         |
| 172 | Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers. BMC<br>Veterinary Research, 2016, 12, 56.                                                                                                | 1.9 | 4         |
| 173 | Joint kinematics alone can distinguish hip or knee osteoarthritis patients from asymptomatic controls with high accuracy. Journal of Orthopaedic Research, 2022, 40, 2229-2239.                                                       | 2.3 | 4         |
| 174 | Can the Output of a Learned Classification Model Monitor a Person's Functional Recovery Status<br>Post-Total Knee Arthroplasty?. Sensors, 2022, 22, 3698.                                                                             | 3.8 | 4         |
| 175 | Are cutaneous reflexes from the foot preserved in passive walking in a DGO?. , 2010, 2010, 3418-21.                                                                                                                                   |     | 3         |
| 176 | Insertion of a pressure sensing arrayminimally affects hindfoot bone kinematics. Journal of Foot and<br>Ankle Research, 2015, 8, 24.                                                                                                  | 1.9 | 3         |
| 177 | Clinical Case: Simulation-based evaluation of post-operative gait function to support clinical decision making in cerebral palsy. Gait and Posture, 2017, 57, 102-103.                                                                | 1.4 | 3         |
| 178 | Thin patientâ€specific clavicle fracture fixation plates can mechanically outperform commercial plates:<br>An in silico approach. Journal of Orthopaedic Research, 2022, 40, 1695-1706.                                               | 2.3 | 3         |
| 179 | Objectifying Treatment Outcomes Using Musculoskeletal Modelling-Based Simulations of Motion. , 2018, , 1-25.                                                                                                                          |     | 3         |
| 180 | Kinetic and kinematic characteristics of stair negotiation in patients with medial knee osteoarthritis.<br>Osteoarthritis and Cartilage, 2013, 21, S257.                                                                              | 1.3 | 2         |

ILSE JONKERS

| #   | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Validation of plantar pressure simulations using finite and discrete element modelling in healthy and<br>diabetic subjects. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1442-1452.                                                              | 1.6 | 2         |
| 182 | Combined manual and automatic landmark detection for enhanced surface registration of anatomical structures: an extensive parameter study for femur and clavicle. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8, 94-102. | 1.9 | 2         |
| 183 | Perturbation of cortical activity elicits regional and age-dependent effects on unconstrained reaching behavior: a pilot study. Experimental Brain Research, 2021, 239, 3585-3600.                                                                                         | 1.5 | 2         |
| 184 | Normal aging affects unconstrained three-dimensional reaching against gravity with reduced vertical precision and increased co-contraction: a pilot study. Experimental Brain Research, 2022, 240, 1029.                                                                   | 1.5 | 2         |
| 185 | The role of medial ligaments and tibialis posterior in stabilising the medial longitudinal foot arch: a cadaveric gait simulator study. Foot and Ankle Surgery, 2022, 28, 906-911.                                                                                         | 1.7 | 2         |
| 186 | The use of botulinum toxin a in the threatment of gait disorders in CP: A multilevel approach. Gait and Posture, 1997, 6, 274.                                                                                                                                             | 1.4 | 1         |
| 187 | Different alterations in the sit to stand movement pattern in women with early and established medial compartment knee osteoarthritis. Osteoarthritis and Cartilage, 2013, 21, S95.                                                                                        | 1.3 | 1         |
| 188 | Variation of actin filament length in dogs. Journal of Anatomy, 2019, 234, 694-699.                                                                                                                                                                                        | 1.5 | 1         |
| 189 | IN VITRO MEASUREMENT OF MUSCLE INDUCED CALCANEAR AND TALAR MOTION. Journal of Biomechanics, 2008, 41, S436.                                                                                                                                                                | 2.1 | 0         |
| 190 | MODELLING SUBJECT-SPECIFIC HIP GEOMETRY AFFECTS HIP CONTACT FORCES IN GAIT. Journal of Biomechanics, 2008, 41, S437.                                                                                                                                                       | 2.1 | 0         |
| 191 | Tibio-Femoral Contact Force During Gait: An Iterative Method Using EMG-Constrained Multi-Body<br>Simulation and Finite Element Analysis. , 2013, , .                                                                                                                       |     | 0         |
| 192 | The contribution of knee extensor and plantarflexor hyperexcitability to gait impairements after stroke: A simulation study. Gait and Posture, 2014, 39, S32.                                                                                                              | 1.4 | 0         |
| 193 | Neuromuscular strategies during gait in women with early and established knee osteoarthritis.<br>Osteoarthritis and Cartilage, 2014, 22, S82-S83.                                                                                                                          | 1.3 | 0         |
| 194 | Subjects with severe knee osteoarthritis reduce medio-lateral forces during gait at the expense of compressive knee contact forces. Osteoarthritis and Cartilage, 2014, 22, S99-S100.                                                                                      | 1.3 | 0         |
| 195 | Changes in proprioceptive weighting in women with knee osteoarthritis during quiet standing compared to healthy controls. Osteoarthritis and Cartilage, 2015, 23, A101.                                                                                                    | 1.3 | 0         |
| 196 | A quantitative assessment of varus thrust during walking in women with early and established medial knee osteoarthritis Osteoarthritis and Cartilage, 2015, 23, A100.                                                                                                      | 1.3 | 0         |
| 197 | Cartilage volume and thickness but not biochemical properties relate to joint loading during gait in healthy controls. Osteoarthritis and Cartilage, 2016, 24, S112.                                                                                                       | 1.3 | 0         |
| 198 | Tibiofemoral joint loading during therapeutic exercises and activities of daily living: Implications for rehabilitation in osteoarthritis and cartilage repair surgery. Osteoarthritis and Cartilage, 2016, 24, S111-S112.                                                 | 1.3 | 0         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | The role of muscle forces on foot internal stresses and plantar pressure distribution: differences between healthy and diabetic neuropathic subjects. Gait and Posture, 2017, 57, 73-74.            | 1.4 | 0         |
| 200 | Assessment of specific muscle tension in dogs through functional electrical stimulation of the gastrocnemius muscle. Research in Veterinary Science, 2017, 113, 33-39.                              | 1.9 | 0         |
| 201 | Intrinsic foot muscle forces: A possible biomarker of diabetes. Gait and Posture, 2020, 81, 64-65.                                                                                                  | 1.4 | Ο         |
| 202 | Evaluation of functional muscle anatomy scalability in the canine hind limb. Journal of Veterinary<br>Medicine Series C: Anatomia Histologia Embryologia, 2021, 50, 637-644.                        | 0.7 | 0         |
| 203 | Subject-Specific Spino-Pelvic Models Reliably Measure Spinal Kinematics During Seated Forward<br>Bending in Adult Spinal Deformity. Frontiers in Bioengineering and Biotechnology, 2021, 9, 720060. | 4.1 | 0         |
| 204 | SimCP: A Simulation Platform to Predict Gait Performance Following Orthopedic Intervention in Children with Cerebral Palsy. Biosystems and Biorobotics, 2019, , 267-270.                            | 0.3 | 0         |
| 205 | Musculoskeletal modelingâ€based definition of load cases and worst ase fracture orientation for the design of clavicle fixation plates. Journal of Orthopaedic Research, 2021, , .                  | 2.3 | 0         |