Jianwei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1249703/publications.pdf

Version: 2024-02-01

126907 223800 3,423 46 33 46 citations h-index g-index papers 46 46 46 2593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Understanding the mechanism of polybrominated diphenyl ethers reducing the anaerobic co-digestion efficiency of excess sludge and kitchen waste. Environmental Science and Pollution Research, 2022, 29, 41357-41367.	5. 3	23
2	Migration, Transformation and Removal of Macrolide Antibiotics in The Environment: A Review. Environmental Science and Pollution Research, 2022, 29, 26045-26062.	5. 3	16
3	New insight into the mechanism of remediation of chromium containing soil by synergetic disposal of ferrous sulfate and digestate. Science of the Total Environment, 2022, 837, 155539.	8.0	13
4	Effect of emerging pollutant fluoxetine on the excess sludge anaerobic digestion. Science of the Total Environment, 2021, 752, 141932.	8.0	94
5	Effect of fluoxetine on enhanced biological phosphorus removal using a sequencing batch reactor. Bioresource Technology, 2021, 320, 124396.	9.6	57
6	Mechanisms of emerging pollutant Dechlorane Plus on the production of short-chain fatty acids from sludge anaerobic fermentation. Environmental Science and Pollution Research, 2021, 28, 34902-34912.	5. 3	45
7	Evaluating the effect of fluoxetine on mesophilic anaerobic dark biohydrogen fermentation of excess sludge. Bioresource Technology, 2021, 336, 125320.	9.6	24
8	Diclofenac inhibited the biological phosphorus removal: Performance and mechanism. Chemosphere, 2020, 243, 125380.	8. 2	76
9	Effect of initial pH on the sludge fermentation performance enhanced by aged refuse at low temperature of 10 ŰC. Environmental Science and Pollution Research, 2020, 27, 31468-31476.	5. 3	24
10	Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. Environmental Science and Pollution Research, 2020, 27, 18145-18156.	5. 3	53
11	Aged refuse enhances anaerobic fermentation of food waste to produce short-chain fatty acids. Bioresource Technology, 2019, 289, 121547.	9.6	78
12	Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue. Bioresource Technology, 2019, 274, 430-438.	9.6	55
13	The feasibility of enhanced biological phosphorus removal in the novel oxic/extended idle process using fermentation liquid from sludge fermentation. RSC Advances, 2018, 8, 3321-3327.	3. 6	6
14	Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research, 2018, 130, 281-290.	11.3	156
15	Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere, 2018, 196, 78-86.	8.2	47
16	Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Bioresource Technology, 2018, 254, 7-15.	9.6	80
17	Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 2018, 249, 431-438.	9.6	67
18	Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 2018, 247, 537-544.	9.6	297

#	Article	IF	CITATIONS
19	Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14104-14113.	6.7	73
20	Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge. Chemosphere, 2018, 213, 276-284.	8.2	70
21	Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin. Bioresource Technology, 2018, 254, 194-202.	9.6	79
22	Synergistic effect of free nitrite acid integrated with biosurfactant alkyl polyglucose on sludge anaerobic fermentation. Waste Management, 2018, 78, 310-317.	7.4	17
23	Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresource Technology, 2018, 268, 230-236.	9.6	77
24	Sulfamethazine (SMZ) affects fermentative short-chain fatty acids production from waste activated sludge. Science of the Total Environment, 2018, 639, 1471-1479.	8.0	51
25	Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid. Bioresource Technology, 2018, 267, 141-148.	9.6	70
26	Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. Water Research, 2018, 145, 113-124.	11.3	137
27	The fate of cyanuric acid in biological wastewater treatment system and its impact on biological nutrient removal. Journal of Environmental Management, 2018, 206, 901-909.	7.8	24
28	Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?. Bioresource Technology, 2017, 234, 456-465.	9.6	117
29	Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 2017, 67, 308-314.	7.4	123
30	Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system. Environmental Science and Pollution Research, 2017, 24, 4494-4505.	5.3	18
31	Aged refuse enhances anaerobic digestion of waste activated sludge. Water Research, 2017, 123, 724-733.	11.3	136
32	Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion. Bioresource Technology, 2017, 246, 234-241.	9.6	52
33	Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Research, 2017, 124, 269-279.	11.3	157
34	The behavior of melamine in biological wastewater treatment system. Journal of Hazardous Materials, 2017, 322, 445-453.	12.4	41
35	Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. Journal of Hazardous Materials, 2017, 323, 602-610.	12.4	50
36	Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions. RSC Advances, 2016, 6, 86165-86173.	3.6	12

#	Article	IF	CITATIONS
37	Revealing the Underlying Mechanisms of How Sodium Chloride Affects Short-Chain Fatty Acid Production from the Cofermentation of Waste Activated Sludge and Food Waste. ACS Sustainable Chemistry and Engineering, 2016, 4, 4675-4684.	6.7	92
38	Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge. Scientific Reports, 2016, 6, 21622.	3.3	31
39	Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. Water Research, 2016, 101, 555-563.	11.3	170
40	An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. Chemosphere, 2016, 144, 160-167.	8.2	137
41	Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor. Journal of Hazardous Materials, 2016, 307, 82-90.	12.4	25
42	An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal. Scientific Reports, 2015, 5, 8602.	3.3	28
43	Enhanced production of short-chain fatty acid from food waste stimulated by alkyl polyglycosides and its mechanism. Waste Management, 2015, 46, 133-139.	7.4	51
44	Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside. International Biodeterioration and Biodegradation, 2015, 104, 283-289.	3.9	60
45	Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Research, 2015, 78, 111-120.	11.3	189
46	How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?. Environmental Science & Environment	10.0	125