Qihui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1249415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on a novel fluorescent anti-counterfeiting acrylate pressure-sensitive adhesive. Journal of Adhesion, 2022, 98, 1151-1167.	3.0	1
2	Combinatorial Selfâ€Assembly of Coordination Cages with Systematically Fineâ€Tuned Cavities for Efficient Coâ€Encapsulation and Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
3	Combinatorial Selfâ€Assembly of Coordination Cages with Systematically Fineâ€Tuned Cavities for Efficient Coâ€Encapsulation and Catalysis. Angewandte Chemie, 2022, 134, .	2.0	10
4	Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chemical Science, 2022, 13, 9016-9022.	7.4	2
5	Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angewandte Chemie, 2021, 133, 3124-3131.	2.0	15
6	Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angewandte Chemie - International Edition, 2021, 60, 3087-3094.	13.8	41
7	Innenrücktitelbild: Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors (Angew. Chem. 6/2021). Angewandte Chemie, 2021, 133, 3351-3351.	2.0	0
8	Functionalized Metalâ€Organic Frameworks for Hg(II) and Cd(II) Capture: Progresses and Challenges. Chemical Record, 2021, 21, 1455-1472.	5.8	16
9	Study on polyurethaneâ€acrylate/cerium dioxide modified by 3â€(Methylacryloxyl)propyltrimethoxy silane and its UV absorption property. Journal of Applied Polymer Science, 2021, 138, 50760.	2.6	2
10	Highly Elastic Anti-fatigue and Anti-freezing Conductive Double Network Hydrogel for Human Body Sensors. Industrial & Engineering Chemistry Research, 2021, 60, 6162-6172.	3.7	28
11	Metal–organic tube or layered assembly: reversible sheet-to-tube transformation and adaptive recognition. Chemical Science, 2020, 11, 9818-9826.	7.4	14
12	Acid–Base-Resistant Metal–Organic Framework for Size-Selective Carbon Dioxide Capture. Inorganic Chemistry, 2020, 59, 13542-13550.	4.0	16
13	Introduction of Flexibility into a Metal–Organic Framework to Promote Hg(II) Capture through Adaptive Deformation. Inorganic Chemistry, 2020, 59, 18264-18275.	4.0	21
14	Electricâ€Field Assisted Inâ€Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 13201-13208.	2.0	16
15	Titelbild: Electricâ€Field Assisted Inâ€Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution (Angew. Chem. 31/2020). Angewandte Chemie, 2020, 132, 12645-12645.	2.0	0
16	Electricâ€Field Assisted Inâ€Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 13101-13108.	13.8	108
17	A tubular luminescent framework: precise decoding of nitroaniline isomers and quantitative detection of traces of benzaldehyde in benzyl alcohol. Journal of Materials Chemistry C, 2020, 8, 9828-9835.	5.5	12
18	Chiral induction in a pcu -derived network from achiral precursors. Chemical Communications, 2019, 55, 4611-4614.	4.1	13

QIHUI CHEN

#	Article	IF	CITATIONS
19	Controllable Coordination Selfâ€Assembly Based on Flexibility of Ligands: Synthesis of Supramolecular Assemblies and Stimuliâ€Driven Structural Transformations. Israel Journal of Chemistry, 2019, 59, 140-150.	2.3	6
20	Incorporation of In ₂ S ₃ Nanoparticles into a Metal–Organic Framework for Ultrafast Removal of Hg from Water. Inorganic Chemistry, 2018, 57, 4891-4897.	4.0	67
21	Pillar-Assisted Construction of a Three-Dimensional Framework from a Two-Dimensional Bilayer Based on a Zn/Cd Heterometal Cluster: Pore Tuning and Gas Adsorption. Crystal Growth and Design, 2018, 18, 1826-1833.	3.0	6
22	A Porous Framework as a Variable Chemosensor: From the Response of a Specific Carcinogenic Alkylâ€Aromatic to Selective Detection of Explosive Nitroaromatics. Chemistry - A European Journal, 2018, 24, 11033-11041.	3.3	19
23	Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature Communications, 2017, 8, 1233.	12.8	286
24	Controllable Reassembly of a Dynamic Metallocage: From Thermodynamic Control to Kinetic Control. Chemistry - A European Journal, 2017, 23, 456-461.	3.3	18
25	A regenerative metal–organic framework for reversible uptake of Cd(<scp>ii</scp>): from effective adsorption to in situ detection. Chemical Science, 2016, 7, 5983-5988.	7.4	133
26	In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg(<scp>ii</scp>) from water. Journal of Materials Chemistry A, 2016, 4, 15370-15374.	10.3	135
27	Conformation Improving Construction of Ag3L2 Metallocages and Their Selective Encapsulation. Crystal Growth and Design, 2016, 16, 3569-3572.	3.0	3
28	Controllable Coordination Selfâ€Assembly Based on Flexible Tripodal Ligands: From Finite Metallocages to Infinite Polycatenanes Step by Step. Chemical Record, 2015, 15, 711-727.	5.8	18
29	Conformation driven in situ interlock: from discrete metallocycles to infinite polycatenanes. Chemical Communications, 2015, 51, 13706-13709.	4.1	15
30	Controllable Coordination-Driven Self-Assembly: From Discrete Metallocages to Infinite Cage-Based Frameworks. Accounts of Chemical Research, 2015, 48, 201-210.	15.6	276
31	A Novel Selfâ€Penetrated Framework with New Topology Based on Rigid Ligands. Chinese Journal of Chemistry, 2014, 32, 1029-1032.	4.9	5
32	A controllable and dynamic assembly system based on discrete metallocages. Chemical Science, 2014, 5, 483-488.	7.4	40
33	Anion-driven self-assembly: from discrete cages to infinite polycatenanes step by step. Chemical Communications, 2013, 49, 719-721.	4.1	32
34	Solvent―and Temperatureâ€Controlled In Situ Ligand Reactions Mediated by Cu ^{II} and 3′â€[(<i>E</i>)â€{[(1 <i>S</i> ,2 <i>S</i>)â€2â€Aminocyclohexyl]imino}methyl]â€4′â€hydroxyâ€4â€bipł Chemistry - A European Journal, 2012, 18, 9117-9124.	nenyl ca rbox	lic Angid.
35	Solvent and temperature influence structural variation from nonporous 2D → 3D parallel polycatenation to 3D microporous metal–organic framework. CrystEngComm, 2011, 13, 3971.	2.6	39
36	From discrete octahedral nanocages to 1D coordination polymer: Coordination-driven a single-crystal-to-single-crystal transformation via anion exchange. Chemical Communications, 2011, 47, 2327-2329.	4.1	59

#	Article	IF	CITATIONS
37	A chemo-enzymatic synthesis of chiral secondary alcohols bearing sulfur-containing functionality. New Journal of Chemistry, 2009, 33, 972.	2.8	11
38	An unexpected ruthenium complex and its unique behavior as catalyst in dynamic kinetic resolution of secondary alcohols. Chemical Communications, 2008, , 5333.	4.1	24