
Maarten Lupker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1249313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 2011, 302, 107-120.	1.8	296
2	Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochimica Et Cosmochimica Acta, 2012, 84, 410-432.	1.6	234
3	Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth and Planetary Science Letters, 2013, 365, 243-252.	1.8	185
4	10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth and Planetary Science Letters, 2012, 333-334, 146-156.	1.8	135
5	A Rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research, 2011, 116, .	3.3	132
6	Floodplains of large rivers: Weathering reactors or simple silos?. Chemical Geology, 2012, 332-333, 166-184.	1.4	96
7	How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon River depth-profiles. Geochimica Et Cosmochimica Acta, 2011, 75, 6955-6970.	1.6	73
8	A new procedure for separating and measuring radiogenic isotopes (U, Th, Pa, Ra, Sr, Nd, Hf) in ice cores. Chemical Geology, 2009, 266, 194-204.	1.4	70
9	Spatial variability of 10 Be-derived erosion rates across the southern Peninsular Indian escarpment: A key to landscape evolution across passive margins. Earth and Planetary Science Letters, 2015, 425, 154-167.	1.8	67
10	lsotopic tracing (Sr, Nd, U and Hf) of continental and marine aerosols in an 18th century section of the Dye-3 ice core (Greenland). Earth and Planetary Science Letters, 2010, 295, 277-286.	1.8	64
11	Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
12	Prediction of depthâ€integrated fluxes of suspended sediment in the Amazon River: particle aggregation as a complicating factor. Hydrological Processes, 2011, 25, 778-794.	1.1	58
13	Grain-size dependent concentration of cosmogenic 10Be and erosion dynamics in a landslide-dominated Himalayan watershed. Geomorphology, 2014, 224, 55-68.	1.1	40
14	Fluvial organic carbon cycling regulated by sediment transit time and mineral protection. Nature Geoscience, 2021, 14, 842-848.	5.4	39
15	In situ cosmogenic 10Be production rate in the High Tropical Andes. Quaternary Geochronology, 2015, 30, 54-68.	0.6	35
16	¹⁰ Be systematics in the Tsangpo-Brahmaputra catchment: the cosmogenic nuclide legacy of the eastern Himalayan syntaxis. Earth Surface Dynamics, 2017, 5, 429-449.	1.0	35
17	Evolution of biomolecular loadings along a major river system. Geochimica Et Cosmochimica Acta, 2018, 223, 389-404.	1.6	34
18	Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports, 2019, 9, 2945.	1.6	33

MAARTEN LUPKER

#	Article	IF	CITATIONS
19	Lake Tauca highstand (Heinrich Stadial 1a) driven by a southward shift of the Bolivian High. Science Advances, 2018, 4, eaar2514.	4.7	28
20	Depth-dependence of the production rate of in situ 14C in quartz from the Leymon High core, Spain. Quaternary Geochronology, 2015, 28, 80-87.	0.6	23
21	The fate of fluvially-deposited organic carbon during transient floodplain storage. Earth and Planetary Science Letters, 2021, 561, 116822.	1.8	23
22	An unshakable carbon budget for the Himalaya. Nature Geoscience, 2021, 14, 745-750.	5.4	20
23	Reconciling drainage and receiving basin signatures of the Godavari River system. Biogeosciences, 2018, 15, 3357-3375.	1.3	19
24	Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas. Earth Surface Dynamics, 2020, 8, 769-787.	1.0	19
25	In-phase millennial-scale glacier changes in the tropics and North Atlantic regions during the Holocene. Nature Communications, 2022, 13, 1419.	5.8	19
26	Antarctic-like temperature variations in the Tropical Andes recorded by glaciers and lakes during the last deglaciation. Quaternary Science Reviews, 2020, 247, 106542.	1.4	17
27	Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach. Geochimica Et Cosmochimica Acta, 2020, 286, 159-176.	1.6	17
28	Cosmogenic in situ 14C-10Be reveals abrupt Late Holocene soil loss in the Andean Altiplano. Nature Communications, 2021, 12, 2546.	5.8	17
29	Paired-cosmogenic nuclide paleoaltimetry. Earth and Planetary Science Letters, 2019, 515, 271-282.	1.8	16
30	Combined cosmogenic 10Be, in situ 14C and 36Cl concentrations constrain Holocene history and erosion depth of Grueben glacier (CH). Swiss Journal of Geosciences, 2016, 109, 379-388.	0.5	15
31	Millennial scale variability of denudation rates for the last 15 kyr inferred from the detrital ¹⁰ Be record of Lake Stappitz in the Hohe Tauern massif, Austrian Alps. Holocene, 2017, 27, 1914-1927.	0.9	14
32	In-situ cosmogenic 14C analysis at ETH Zürich: Characterization and performance of a new extraction system. Nuclear Instruments & Methods in Physics Research B, 2019, 457, 30-36.	0.6	14
33	Impact of sediment–seawater cation exchange on Himalayan chemical weathering fluxes. Earth Surface Dynamics, 2016, 4, 675-684.	1.0	13
34	Constant denudation rates in a high alpine catchment for the last 6 kyrs. Earth Surface Processes and Landforms, 2017, 42, 1065-1077.	1.2	13
35	Constraining Instantaneous Fluxes and Integrated Compositions of Fluvially Discharged Organic Matter. Geochemistry, Geophysics, Geosystems, 2018, 19, 2453-2462.	1.0	13
36	Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: ¹⁴ C-based evidence for stabilization of microbial necromass. Biogeosciences, 2021, 18, 189-205.	1.3	11

MAARTEN LUPKER

#	Article	IF	CITATIONS
37	Fluvial Organic Carbon Composition Regulated by Seasonal Variability in Lowland River Migration and Water Discharge. Geophysical Research Letters, 2021, 48, .	1.5	10
38	Two MATLAB programs for computing paleo-elevations and burial ages from paired-cosmogenic nuclides. MethodsX, 2019, 6, 1547-1556.	0.7	8
39	Shortâ€time (<10 ka) denudation rates as a marker of active folding in the Zagros Fold Belt (Iran). Terra Nova, 2019, 31, 111-119.	0.9	6
40	Molecular Tracing of Riverine Soil Organic Matter From the Central Himalaya. Geophysical Research Letters, 2020, 47, e2020GL087403.	1.5	6
41	Application of image analysis and image simulation for quantitative characterization of scale spallation during cyclic oxidation of a Pt-aluminide coating. Intermetallics, 2006, 14, 423-434.	1.8	3
42	Modelling the systematics of cosmogenic nuclide signals in fluvial sediments following extreme events. Earth Surface Processes and Landforms, 2022, 47, 2325-2340.	1.2	3
43	Neogene basin infilling from cosmogenic nuclides (10 Be and 21 Ne) in Atacama, Chile: Implications for palaeoclimate and supergene copper mineralization. Basin Research, 2021, 33, 2549-2571.	1.3	2
44	Dischargeâ€Modulated Soil Organic Carbon Export From Temperate Mountainous Headwater Streams. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2