

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1249259/publications.pdf Version: 2024-02-01

DACCA 9

#	Article	IF	CITATIONS
1	Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 2018, 114, 115-124.	4.6	359
2	Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy, 2007, 35, 3316-3326.	4.2	205
3	Greenhouse gas emissions and energy balance of palm oil biofuel. Renewable Energy, 2010, 35, 2552-2561.	4.3	126
4	Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado River Basin. Environmental Science & Technology, 2002, 36, 3194-3200.	4.6	116
5	Assessing employment in renewable energy technologies: A case study for wind power in Brazil. Renewable and Sustainable Energy Reviews, 2014, 31, 83-90.	8.2	97
6	BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues. Applied Energy, 2016, 179, 55-63.	5.1	91
7	ASSESSING THE COSTS OF ELECTRICITY. Annual Review of Environment and Resources, 2004, 29, 301-344.	5.6	82
8	Impacts from decommissioning of hydroelectric dams: a life cycle perspective. Climatic Change, 2007, 84, 281-294.	1.7	82
9	Life cycle assessment of an onshore wind farm located at the northeastern coast of Brazil. Renewable Energy, 2013, 53, 60-70.	4.3	82
10	Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resources, Conservation and Recycling, 2019, 148, 170-177.	5.3	75
11	Comparative Energy, Environmental, and Economic Analysis of Traditional and E-commerce DVD Rental Networks. Journal of Industrial Ecology, 2008, 11, 77-91.	2.8	48
12	Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass and Bioenergy, 2012, 44, 70-79.	2.9	39
13	Historical carbon budget of the brazilian ethanol program. Energy Policy, 2009, 37, 4863-4873.	4.2	34
14	Estimating the human appropriation of land in Brazil by means of an Input–Output Economic Model and Ecological Footprint analysis. Ecological Indicators, 2015, 53, 78-94.	2.6	31
15	Logging residues and CO 2 of Brazilian Amazon timber: Two case studies of forest harvesting. Resources, Conservation and Recycling, 2017, 122, 280-285.	5.3	31
16	Carbon reduction potential and costs through circular bioeconomy in the Brazilian steel industry. Resources, Conservation and Recycling, 2021, 169, 105517.	5.3	28
17	Energia eólica, geração de empregos e desenvolvimento sustentável. Estudos Avancados, 2013, 27, 99-116.	0.2	25
18	Land use change within EU sustainability criteria for biofuels: The case of oil palm expansion in the Brazilian Amazon. Renewable Energy, 2016, 89, 588-597.	4.3	25

Pacca, S

#	Article	IF	CITATIONS
19	Variability in the life cycle of concrete block CO2 emissions and cumulative energy demand in the Brazilian Market. Construction and Building Materials, 2016, 114, 588-594.	3.2	24
20	The future of oil and bioethanol in Brazil. Energy Policy, 2014, 65, 7-15.	4.2	23
21	Socio-economic Benefits of Wind Power in Brazil. Journal of Sustainable Development of Energy, Water and Environment Systems, 2013, 1, 27-40.	0.9	20
22	A Biorefinery for Mobility?. Environmental Science & amp; Technology, 2011, 45, 9498-9505.	4.6	19
23	Primary data priorities for the life cycle inventory of construction products: focus on foreground processes. International Journal of Life Cycle Assessment, 2020, 25, 980-997.	2.2	18
24	Potential CO ₂ reduction and uptake due to industrialization and efficient cement use in Brazil by 2050. Journal of Industrial Ecology, 2021, 25, 344-358.	2.8	18
25	Industrial low carbon futures: A regional marginal abatement cost curve for Sao Paulo, Brazil. Journal of Cleaner Production, 2018, 200, 680-686.	4.6	15
26	Environmental performance of an integrated water supply and wastewater system through life cycle assessment — A Brazilian case study. Science of the Total Environment, 2022, 835, 155213.	3.9	10
27	Carbon markets and low-carbon investment in emerging economies: A synthesis of parallel workshops in Brazil and India. Energy Policy, 2011, 39, 6698-6700.	4.2	6
28	Reflections on the international climate change negotiations: A synthesis of a working group on carbon emission policy and regulation in Brazil. Energy Policy, 2013, 59, 938-941.	4.2	6
29	The climate change mitigation potential of sugarcane based technologies for automobiles; CO2 negative emissions in sight. Transportation Research, Part D: Transport and Environment, 2020, 86, 102454.	3.2	5
30	How far can low-carbon energy scenarios reach based on proven technologies?. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 687-705.	1.0	3
31	Financing aspects of electricity saving's in Brasil. Renewable Energy, 1996, 9, 891-894.	4.3	1
32	The role of biomass in meeting the Paris agreement. IOP Conference Series: Earth and Environmental Science, 2019, 354, 012107.	0.2	1
33	The carbon footprint of Brazilian households through the Consumer Expenditure Survey (POF). Revista Kawsaypacha Sociedad Y Medio Ambiente, 2021, , 11-27.	0.1	1
34	Energy efficiency intervention in urea processes by recovering the excess pressure through hydraulic power recovery Turbines (HPRTs). Sustainable Energy Technologies and Assessments, 2022, 52, 102263.	1.7	0