
Brian S Hawkett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1249019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Janus particles by simplified RAFT-based emulsion polymerization process for polymer coating. Colloid and Polymer Science, 2022, 300, 341-349.	2.1	2
2	Safer emulsion explosives resulting from NOx inhibition. Chemical Engineering Journal, 2021, 403, 125713.	12.7	4
3	Ultra-thin patchy polymer-coated graphene oxide as a novel anticancer drug carrier. Polymer Chemistry, 2021, 12, 92-104.	3.9	5
4	Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. Small Methods, 2021, 5, e2000692.	8.6	8
5	Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nanotechnology, 2021, 12, .	3.7	17
6	Inside Front Cover: Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles (Small) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
7	Encapsulation by Directed PISA: RAFTâ€Based Polymerâ€Vesiculated Pigment for Opacity Enhancement in Paint Films. Macromolecular Rapid Communications, 2021, 42, e2100008.	3.9	6
8	Fluorescence Enhancement through Confined Oligomerization in Nanochannels: An Anthryl Oligomer in a Metal-Organic Framework. , 2021, 3, 1599-1604.		4
9	Soft–hard Janus nanoparticles for polymer encapsulation of solid particulate. Polymer Chemistry, 2020, 11, 5610-5618.	3.9	6
10	How pointed can magnetized ferrofluid tips be?. Physical Review Fluids, 2020, 5, .	2.5	2
11	Atomic-scale Observation of Hydroxyapatite Nanoparticle. Microscopy and Microanalysis, 2019, 25, 2528-2529.	0.4	Ο
12	SPIONâ€Decorated Nanofibers by RAFTâ€Mediated Free Radical Emulsion Polymerizationâ€Induced Self Assembly. Macromolecular Rapid Communications, 2019, 40, e1800402.	3.9	15
13	Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150ÂMeV proton beam. OpenNano, 2019, 4, 100027.	4.8	43
14	Aqueous Polymeric Hollow Particles as an Opacifier by Emulsion Polymerization Using Macro-RAFT Amphiphiles. Langmuir, 2018, 34, 4255-4263.	3.5	32
15	Steric Stabilization of γ-Fe ₂ O ₃ Superparamagnetic Nanoparticles in a Hydrophobic Ionic Liquid and the Magnetorheological Behavior of the Ferrofluid. Langmuir, 2018, 34, 3068-3075.	3.5	24
16	The mechanism of the spontaneous detonation of ammonium nitrate in reactive grounds. Journal of Environmental Chemical Engineering, 2018, 6, 281-288.	6.7	18
17	Biodistribution and Clearance of Stable Superparamagnetic Maghemite Iron Oxide Nanoparticles in Mice Following Intraperitoneal Administration. International Journal of Molecular Sciences, 2018, 19, 205.	4.1	72
18	A â€~grafting from' approach to polymer nanorods for pH-triggered intracellular drug delivery. Polymer, 2017, 112, 244-251.	3.8	21

BRIAN S HAWKETT

4

#	Article	IF	CITATIONS
19	Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactantâ€Free RAFT Emulsion Polymerization. Macromolecular Bioscience, 2017, 17, 1600366.	4.1	26
20	Mechanical properties of Ropaque hollow nanoparticles. Polymer, 2017, 131, 10-16.	3.8	7
21	Endogenous fibrinolysis facilitates clot retraction in vivo. Blood, 2017, 130, 2453-2462.	1.4	56
22	Effect of a homogeneous magnetic field on the electrospraying characteristics of sulfolaneÂferrofluids. Journal of Fluid Mechanics, 2017, 833, 430-444.	3.4	4
23	Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 899-909.	6.7	25
24	Synthesis and Applications of Polymeric Janus Nanoparticles. , 2017, , 31-68.		2
25	Waterborne, all-polymeric, colloidal â€~raspberry' particles with controllable hydrophobicity and water droplet adhesion properties. Thin Solid Films, 2016, 603, 69-74.	1.8	4
26	The effects of magnetic surface stress on electrospray of an ionic liquid ferrofluid. , 2016, , .		3
27	Species measurements in the beam of an ionic liquid ferrofluid capillary electrospray source under magnetic stress. , 2016, , .		6
28	Monodispersed polymer encapsulated superparamagnetic iron oxide nanoparticles for cell labeling. Polymer, 2016, 106, 238-248.	3.8	30
29	Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization. Biomacromolecules, 2016, 17, 965-973.	5.4	26
30	Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF. ACS Applied Materials & Interfaces, 2016, 8, 6743-6750.	8.0	72
31	Polymer coating of graphene oxide via reversible addition–fragmentation chain transfer mediated emulsion polymerization. Journal of Polymer Science Part A, 2015, 53, 1413-1421.	2.3	49
32	The interaction of sterically stabilized magnetic nanoparticles with fresh human red blood cells. International Journal of Nanomedicine, 2015, 10, 6645.	6.7	11
33	Mössbauer evaluation of the interparticle magnetic Interactions within the magnetic hyperthermia beads. Journal of Magnetism and Magnetic Materials, 2015, 380, 347-352.	2.3	5
34	Synthesis of polymeric janus nanoparticles and their application in surfactant-free emulsion polymerizations. Polymer Chemistry, 2015, 6, 426-435.	3.9	58
35	Premature detonation of an NH4NO3 emulsion in reactive ground. Journal of Hazardous Materials, 2015, 283, 314-320.	12.4	12

36 Species measurements in the beam of an ionic liquid ferrofluid electrospray source. , 2014, , .

BRIAN S HAWKETT

#	Article	IF	CITATIONS
37	Self-Assembling Array of Magnetoelectrostatic Jets from the Surface of a Superparamagnetic Ionic Liquid. Langmuir, 2014, 30, 14143-14150.	3.5	29
38	Ultrasmall superparamagnetic iron oxide nanoparticle prelabelling of human neural precursor cells. Biomaterials, 2014, 35, 5549-5564.	11.4	47
39	Electrical impedance spectroscopy for determining critical micelle concentration of ionic emulsifiers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 195-203.	4.7	18
40	The composition and end-group functionality of sterically stabilized nanoparticles enhances the effectiveness of co-administered cytotoxins. Biomaterials Science, 2013, 1, 1260-1272.	5.4	23
41	Micron-sized polystyrene particles by surfactant-free emulsion polymerization in air: Synthesis and mechanism. Journal of Polymer Science Part A, 2013, 51, 3997-4002.	2.3	44
42	Polymer coating of carboxylic acid functionalized multiwalled carbon nanotubes via reversible additionâ€fragmentation chain transfer mediated emulsion polymerization. Journal of Polymer Science Part A, 2013, 51, 250-257.	2.3	48
43	Thermoresponsive behavior of amphiphilic diblock co-oligomers of ethylene glycol and styrene in aqueous solution. Soft Matter, 2013, 9, 7007.	2.7	12
44	Phase Behavior of Amphiphilic Diblock Co-oligomers with Nonionic and Ionic Hydrophilic Groups. Journal of Physical Chemistry B, 2013, 117, 3005-3018.	2.6	6
45	Polymer–TiO ₂ composite nanorattles via RAFTâ€mediated emulsion polymerization. Journal of Polymer Science Part A, 2012, 50, 346-352.	2.3	36
46	Short chain amphiphilic diblock coâ€oligomers via RAFT polymerization. Journal of Polymer Science Part A, 2012, 50, 187-198.	2.3	23
47	RAFT Polymerization: A Powerful Tool for the Synthesis and Study of Oligomers. ACS Symposium Series, 2012, , 13-25.	0.5	3
48	Effect of Stabilizer Functionality on the Kinetics of Emulsion Polymerization in Hairy Particles. Macromolecules, 2011, 44, 8744-8754.	4.8	6
49	Stable and Water-Tolerant Ionic Liquid Ferrofluids. ACS Applied Materials & Interfaces, 2011, 3, 662-667.	8.0	70
50	Miniemulsion Polymerization with Arrested Ostwald Ripening Stabilized by Amphiphilic RAFT Copolymers. Macromolecules, 2010, 43, 7950-7957.	4.8	34
51	Controlling the Locus of Bubble Nucleation by Dissolved Gases in Heterogeneous Liquidâ^'Liquid Systems. Langmuir, 2010, 26, 684-691.	3.5	1
52	Optimized Steric Stabilization of Aqueous Ferrofluids and Magnetic Nanoparticles. Langmuir, 2010, 26, 4465-4472.	3.5	71
53	Chain Transfer to Polymer and Branching in Controlled Radical Polymerizations of <i>n</i> â€Butyl Acrylate. Macromolecular Rapid Communications, 2009, 30, 2002-2021.	3.9	136
54	RAFT polymerization kinetics: How long are the crossâ€ŧerminating oligomers?. Journal of Polymer Science Part A, 2009, 47, 3455-3466.	2.3	82

4

BRIAN S HAWKETT

#	Article	IF	CITATIONS
55	Obtaining Kinetic Information from the Chain-Length Distribution of Polymers Produced by RAFT. Journal of Physical Chemistry B, 2009, 113, 7086-7094.	2.6	48
56	Polymer Encapsulated Gibbsite Nanoparticles: Efficient Preparation of Anisotropic Composite Latex Particles by RAFT-Based Starved Feed Emulsion Polymerization. Langmuir, 2009, 25, 10523-10533.	3.5	94
57	Control of Particle Morphology in Ab Initio RAFT Mediated Emulsion Polymerization. Australian Journal of Chemistry, 2009, 62, 1501.	0.9	11
58	Pigment Encapsulation by Emulsion Polymerization Using Macro-RAFT Copolymers. Langmuir, 2008, 24, 2140-2150.	3.5	182
59	RAFT Polymerization Kinetics: Combination of Apparently Conflicting Models. Macromolecules, 2008, 41, 6400-6412.	4.8	116
60	Particle Formation in ab Initio RAFT Mediated Emulsion Polymerization Systems. Macromolecules, 2007, 40, 6181-6189.	4.8	129
61	Synthesis of Anisotropic Nanoparticles by Seeded Emulsion Polymerization. Langmuir, 2006, 22, 4037-4043.	3.5	263
62	Molecular Watchmaking:ab initio Emulsion Polymerization by RAFT-controlled Self-assembly. Macromolecular Symposia, 2005, 231, 84-93.	0.7	62
63	A rheological investigation of the self-assembly and adsorption behavior of a surfactant salt. Journal of Colloid and Interface Science, 2005, 292, 46-53.	9.4	6
64	The Determination of the Isoelectric Point from Measurements of Dispersion Viscosity as a Function of pH. Journal of Dispersion Science and Technology, 2005, 26, 469-472.	2.4	15
65	Ab Initio Emulsion Polymerization by RAFT-Controlled Self-Assembly. Macromolecules, 2005, 38, 2191-2204.	4.8	592
66	Diffusion coefficients of the monomer and oligomers in hydroxyethyl methacrylate. Journal of Polymer Science Part A, 2003, 41, 2491-2501.	2.3	25
67	Miniemulsion Polymerization Stabilized by Amphipathic Macro RAFT Agents. Macromolecules, 2003, 36, 8907-8909.	4.8	107
68	Effective ab Initio Emulsion Polymerization under RAFT Control. Macromolecules, 2002, 35, 9243-9245.	4.8	394
69	Operation of semi-batch emulsion polymerisation reactors: Modelling, validation and effect of operating conditions. Chemical Engineering Science, 2002, 57, 2955-2969.	3.8	75
70	Analysis of interval III kinetic data for emulsion polymerizations. Journal of the Chemical Society Faraday Transactions I, 1981, 77, 2395.	1.0	31
71	Radical capture efficiencies in emulsion polymerization. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 3173-3179.	0.8	25
72	Seeded emulsion polymerization of styrene. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1323.	1.0	164

5

#	Article	IF	CITATIONS
73	General solution to the Smith–Ewart equation for emulsion polymerization kinetics. Journal of the Chemical Society Faraday Transactions I, 1977, 73, 690.	1.0	12
74	Emulsion polymerization kinetics. General solutions for Smith–Ewart cases I and II. Journal of the Chemical Society Faraday Transactions I, 1975, 71, 2288.	1.0	10