
Claas Nendel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1248974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of temperature on the movement and feeding behaviour of the large lupine beetle, Sitona gressorius. Journal of Pest Science, 2023, 96, 389-402.	3.7	6
2	Machine learning in crop yield modelling: A powerful tool, but no surrogate for science. Agricultural and Forest Meteorology, 2022, 312, 108698.	4.8	43
3	Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sensing of Environment, 2022, 269, 112795.	11.0	49
4	Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 2022, 269, 112831.	11.0	95
5	Probabilistic modeling of crop-yield loss risk under drought: a spatial showcase for sub-Saharan Africa. Environmental Research Letters, 2022, 17, 024028.	5.2	14
6	Transition zones across agricultural field boundaries for integrated landscape research and management of biodiversity and yields. Ecological Solutions and Evidence, 2022, 3, .	2.0	7
7	Estimating the Evaporative Cooling Effect of Irrigation within and above Soybean Canopy. Water (Switzerland), 2022, 14, 319.	2.7	3
8	Improving the simulation of permanent grasslands across Germany by using multi-objective uncertainty-based calibration of plant-water dynamics. European Journal of Agronomy, 2022, 134, 126464.	4.1	1
9	Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites. European Journal of Agronomy, 2022, 134, 126446.	4.1	6
10	Modeling Intra―and Interannual Variability of BVOC Emissions From Maize, Oil‧eed Rape, and Ryegrass. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	2
11	Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain. Scientific Reports, 2022, 12, 4049.	3.3	9
12	Are soybean models ready for climate change food impact assessments?. European Journal of Agronomy, 2022, 135, 126482.	4.1	25
13	Priority for climate adaptation measures in European crop production systems. European Journal of Agronomy, 2022, 138, 126516.	4.1	23
14	Same soil, different climate: Crop model intercomparison on translocated lysimeters. Vadose Zone Journal, 2022, 21, .	2.2	4
15	How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?. Climatic Change, 2022, 172, .	3.6	5
16	Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. Journal of Experimental Botany, 2022, 73, 5715-5729.	4.8	10
17	Ensemble modelling, uncertainty and robust predictions of organic carbon in longâ€term bareâ€fallow soils. Global Change Biology, 2021, 27, 904-928.	9.5	52
18	Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China. Geoscientific Model Development, 2021, 14, 1493-1510.	3.6	29

#	Article	IF	CITATIONS
19	Agricultural Landscapes in Brandenburg, Germany: An Analysis of Characteristics and Spatial Patterns. International Journal of Environmental Research, 2021, 15, 487-507.	2.3	9
20	Biotic Yield Losses in the Southern Amazon, Brazil: Making Use of Smartphone-Assisted Plant Disease Diagnosis Data. Frontiers in Plant Science, 2021, 12, 621168.	3.6	12
21	Detection and Quantification of Irrigation Water Amounts at 500 m Using Sentinel-1 Surface Soil Moisture. Remote Sensing, 2021, 13, 1727.	4.0	27
22	Yield Response of an Ensemble of Potato Crop Models to Elevated CO2 in Continental Europe. European Journal of Agronomy, 2021, 126, 126265.	4.1	6
23	Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 2021, 16, 104033.	5.2	6
24	Mapping Crop Types and Cropping Systems in Nigeria with Sentinel-2 Imagery. Remote Sensing, 2021, 13, 3523.	4.0	29
25	Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators, 2021, 129, 107870.	6.3	18
26	Modelling Agroforestry's Contributions to People—A Review of Available Models. Agronomy, 2021, 11, 2106.	3.0	16
27	Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sensing of Environment, 2020, 238, 111124.	11.0	83
28	Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agricultural Systems, 2020, 177, 102707.	6.1	43
29	Sustainable intensification of crop residue exploitation for bioenergy: Opportunities and challenges. GCB Bioenergy, 2020, 12, 71-89.	5.6	20
30	Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, 2020, 281, 107851.	4.8	35
31	Testing and Application of the AquaCrop Model for Wheat Production Under Different Field Management Conditions in South-Eastern Australia. Agricultural Research, 2020, 9, 379-391.	1.7	3
32	Crop growth and soil water fluxes at erosionâ€affected arable sites: Using weighing lysimeter data for model intercomparison. Vadose Zone Journal, 2020, 19, e20058.	2.2	17
33	Modelling climate change impacts on maize yields under low nitrogen input conditions in sub‣aharan Africa. Global Change Biology, 2020, 26, 5942-5964.	9.5	60
34	No perfect storm for crop yield failure in Germany. Environmental Research Letters, 2020, 15, 104012.	5.2	53
35	Estimating the contribution of crop residues to soil organic carbon conservation. Environmental Research Letters, 2019, 14, 094008.	5.2	40
36	Microclimate and matter dynamics in transition zones of forest to arable land. Agricultural and Forest Meteorology, 2019, 268, 1-10.	4.8	21

#	Article	IF	CITATIONS
37	Reply to Snowdon et al. and Piepho: Genetic response diversity to provide yield stability of cultivar groups deserves attention. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10627-10629.	7.1	7
38	Management and spatial resolution effects on yield and water balance at regional scale in crop models. Agricultural and Forest Meteorology, 2019, 275, 184-195.	4.8	22
39	Temporal Sensitivity Analysis of the MONICA Model: Application of Two Global Approaches to Analyze the Dynamics of Parameter Sensitivity. Agriculture (Switzerland), 2019, 9, 37.	3.1	10
40	Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes. Agriculture (Switzerland), 2019, 9, 6.	3.1	18
41	The nitrogen nutrition potential of arable soils. Scientific Reports, 2019, 9, 5851.	3.3	25
42	Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agricultural and Forest Meteorology, 2019, 271, 264-284.	4.8	62
43	Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy, 2019, 83, 543-559.	5.6	67
44	Decline in climate resilience of European wheat. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 123-128.	7.1	144
45	Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates. European Journal of Agronomy, 2019, 103, 32-46.	4.1	16
46	Growth and yield response of faba bean to soil moisture regimes and sowing dates: Field experiment and modelling study. Agricultural Water Management, 2019, 213, 1063-1077.	5.6	8
47	Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sensing of Environment, 2019, 220, 135-151.	11.0	307
48	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	9.5	107
49	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	9.5	312
50	Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 2019, 264, 351-362.	4.8	35
51	Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop and Pasture Science, 2018, 69, 154.	1.5	40
52	Landâ€use change and land degradation on the Mongolian Plateau from 1975 to 2015—A case study from Xilingol, China. Land Degradation and Development, 2018, 29, 1595-1606.	3.9	107
53	Sweet corn significantly increases nitrogen retention and reduces nitrogen leaching as summer catch crop in protected vegetable production systems. Soil and Tillage Research, 2018, 180, 148-153.	5.6	25
54	Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil and Tillage Research, 2018, 180, 210-221.	5.6	43

#	Article	IF	CITATIONS
55	Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 2018, 159, 260-274.	6.1	68
56	How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?. European Journal of Agronomy, 2018, 100, 67-75.	4.1	68
57	Seeing the forest not for the carbon: why concentrating on land-use-induced carbon stock changes of soils in Brazil can be climate-unfriendly. Regional Environmental Change, 2018, 18, 63-75.	2.9	9
58	Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.	6.1	47
59	A model-based assessment of the environmental impact of land-use change across scales in Southern Amazonia. Regional Environmental Change, 2018, 18, 161-173.	2.9	9
60	Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 2018, 24, 1291-1307.	9.5	149
61	Sensitivity of European wheat to extreme weather. Field Crops Research, 2018, 222, 209-217.	5.1	101
62	Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change. Agricultural and Environmental Letters, 2018, 3, 180026.	1.2	36
63	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	12.8	230
64	The response of process-based agro-ecosystem models to within-field variability in site conditions. Field Crops Research, 2018, 228, 1-19.	5.1	25
65	The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach. Agricultural Systems, 2018, 165, 1-13.	6.1	16
66	Multimodel ensembles improve predictions of crop–environment–management interactions. Global Change Biology, 2018, 24, 5072-5083.	9.5	111
67	Carbon-optimised land management strategies for southern Amazonia. Regional Environmental Change, 2018, 18, 1-9.	2.9	9
68	Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. European Journal of Agronomy, 2017, 88, 41-52.	4.1	27
69	Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. European Journal of Agronomy, 2017, 84, 152-165.	4.1	35
70	The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation. Agricultural Systems, 2017, 152, 67-79.	6.1	12
71	Gauging the sources of uncertainty in soybean yield simulations using the MONICA model. Agricultural Systems, 2017, 155, 9-18.	6.1	23
72	Net ecosystem fluxes and composition of biogenic volatile organic compounds over a maize field–interaction of meteorology and phenological stages. GCB Bioenergy, 2017, 9, 1627-1643.	5.6	18

#	Article	IF	CITATIONS
73	Performance of process-based models for simulation of grain N in crop rotations across Europe. Agricultural Systems, 2017, 154, 63-77.	6.1	43
74	The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 2017, 3, 17102.	9.3	170
75	The implication of input data aggregation on up-scaling soil organic carbon changes. Environmental Modelling and Software, 2017, 96, 361-377.	4.5	28
76	Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes – a review. Agricultural and Forest Meteorology, 2017, 232, 659-671.	4.8	95
77	Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 2017, 82, 144-162.	4.1	84
78	A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 2017, 23, 1258-1281.	9.5	90
79	Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? – A review of carbon footprint calculators. Renewable and Sustainable Energy Reviews, 2017, 67, 461-476.	16.4	69
80	CROP MODELS AS RESEARCH AND INTERPRETATIVE TOOLS. Sel'skokhozyaistvennaya Biologiya, 2017, 52, 437-445.	0.3	12
81	Experiences of inter- and transdisciplinary research – a trajectory of knowledge integration within a large research consortium. Erdkunde, 2017, 71, 177-193.	0.8	15
82	Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS ONE, 2016, 11, e0151782.	2.5	78
83	Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 2016, 81, 86-101.	4.5	50
84	Improving the accounting of field emissions in the carbon footprint of agricultural products: a comparison of default IPCC methods with readily available medium-effort modeling approaches. International Journal of Life Cycle Assessment, 2016, 21, 791-805.	4.7	33
85	Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 2016, 198, 80-92.	5.1	47
86	"Slash and burn―or "weed and manure� A modelling approach to explore hypotheses of late Neolithic crop cultivation in pre-alpine wetland sites. Vegetation History and Archaeobotany, 2016, 25, 611-627.	2.1	29
87	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	18.8	352
88	Key challenges and priorities for modelling European grasslands under climate change. Science of the Total Environment, 2016, 566-567, 851-864.	8.0	52
89	Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. Journal of Agricultural Science, 2016, 154, 1218-1240.	1.3	70
90	Reproducing CO2 exchange rates of a crop rotation at contrasting terrain positions using two different modelling approaches. Soil and Tillage Research, 2016, 156, 219-229.	5.6	7

#	Article	IF	CITATIONS
91	Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing. Agricultural Water Management, 2016, 166, 139-148.	5.6	29
92	Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology, 2016, 220, 101-115.	4.8	35
93	Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling and Software, 2016, 80, 100-112.	4.5	26
94	Simulating Temperature Impacts on Crop Production Using MONICA. Springer Water, 2016, , 503-518.	0.3	3
95	A Spatial Model-Based Decision Support System for Evaluating Agricultural Landscapes Under the Aspect of Climate Change. Springer Water, 2016, , 519-540.	0.3	8
96	The soybean yield gap in Brazil – magnitude, causes and possible solutions for sustainable production. Journal of Agricultural Science, 2015, 153, 1394-1411.	1.3	149
97	Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 2015, 72, 287-303.	4.5	230
98	A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 2015, 214-215, 483-493.	4.8	31
99	Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling and Software, 2015, 72, 402-417.	4.5	112
100	Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015, 70, 98-111.	4.1	125
101	Analysing the parameter sensitivity of the agro-ecosystem model MONICA for different crops. European Journal of Agronomy, 2015, 71, 73-87.	4.1	35
102	Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 261-277.	0.4	11
103	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	18.8	1,544
104	Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 2015, 21, 911-925.	9.5	387
105	Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany. Ecological Indicators, 2015, 48, 505-517.	6.3	110
106	Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research, 2015, 65, 141-157.	1.1	43
107	Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.	1.1	122
108	Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Climate Research, 2015, 65, 53-69.	1.1	39

#	Article	IF	CITATIONS
109	Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. European Journal of Agronomy, 2014, 52, 22-32.	4.1	64
110	Testing farm management options as climate change adaptation strategies using the MONICA model. European Journal of Agronomy, 2014, 52, 47-56.	4.1	67
111	Considering cost accountancy items in crop production simulations under climate change. European Journal of Agronomy, 2014, 52, 57-68.	4.1	18
112	How do various maize crop models vary in their responses to climate change factors?. Global Change Biology, 2014, 20, 2301-2320.	9.5	525
113	YIELDSTAT – A spatial yield model for agricultural crops. European Journal of Agronomy, 2014, 52, 33-46.	4.1	24
114	Predicting Maize Phenology: Intercomparison of Functions for Developmental Response to Temperature. Agronomy Journal, 2014, 106, 2087-2097.	1.8	112
115	MONICA: A Simulation Model for Nitrogen and Carbon Dynamics in Agro-Ecosystems. Environmental Science and Engineering, 2014, , 389-405.	0.2	9
116	Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 2013, 3, 827-832.	18.8	1,021
117	Simulating regional winter wheat yields using input data of different spatial resolution. Field Crops Research, 2013, 145, 67-77.	5.1	33
118	LandCaRe DSS – An interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies. Journal of Environmental Management, 2013, 127, S168-S183.	7.8	57
119	Dynamic fuzzy models in agroecosystem modeling. Environmental Modelling and Software, 2013, 46, 44-49.	4.5	8
120	The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment. Journal of Agricultural Science, 2013, 151, 538-555.	1.3	29
121	Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 2012, 133, 23-36.	5.1	269
122	The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling, 2011, 222, 1614-1625.	2.5	175
123	Grapevine bud break prediction for cool winter climates. International Journal of Biometeorology, 2010, 54, 231-241.	3.0	73
124	Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model. Environmental Pollution, 2010, 158, 2218-2229.	7.5	46
125	Evaluation of Best Management Practices for N fertilisation in regional field vegetable production with a small-scale simulation model. European Journal of Agronomy, 2009, 30, 110-118.	4.1	40
126	Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels. Plant and Soil, 2009, 325, 319-334.	3.7	10

#	Article	IF	CITATIONS
127	Testing different CO ₂ response algorithms against a FACE crop rotation experiment. Njas - Wageningen Journal of Life Sciences, 2009, 57, 17-25.	7.7	18
128	Soil Biology and Nitrogen Dynamics Of Vineyard Soils As Affected by a Mature Biowaste Compost Application. Compost Science and Utilization, 2007, 15, 70-77.	1.2	15
129	Nitrogen mineralization from mature bioâ€waste compost in vineyard soils. III Simulation of soil mineralâ€nitrogen dynamics. Journal of Plant Nutrition and Soil Science, 2007, 170, 598-607.	1.9	8
130	Kinetics of net nitrogen mineralisation from soil-applied grape residues. Nutrient Cycling in Agroecosystems, 2007, 79, 233-241.	2.2	11
131	DATABASE OF NITROGEN FERTILISATION EXPERIMENTS WITH FIELD VEGETABLES. Acta Horticulturae, 2006, , 229-232.	0.2	0
132	Nitrogen mineralization from mature bio-waste compost in vineyard soils II. Test of N-mineralization parameters in a long-termin situ incubation experiment. Journal of Plant Nutrition and Soil Science, 2005, 168, 219-227.	1.9	11
133	A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecological Modelling, 2004, 177, 1-15.	2.5	46
134	Nitrogen mineralization from mature bio-waste compost in vineyard soils. I. Long-term laboratory incubation experiments. Journal of Plant Nutrition and Soil Science, 2004, 167, 397-407.	1.9	19
135	Data on and methodology for measurements of microclimate and matter dynamics in transition zones between forest and adjacent arable land. One Ecosystem, 0, 3, e24295.	0.0	1