
Dario Krapf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1248121/publications.pdf Version: 2024-02-01

DADIO KDADE

#	Article	IF	CITATIONS
1	Ion channels, phosphorylation and mammalian sperm capacitation. Asian Journal of Andrology, 2011, 13, 395-405.	1.6	257
2	Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. Advances in Anatomy, Embryology and Cell Biology, 2016, 220, 93-106.	1.6	154
3	Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2610-2620.	3.8	153
4	Inhibition of Ser/Thr Phosphatases Induces Capacitation-associated Signaling in the Presence of Src Kinase Inhibitors. Journal of Biological Chemistry, 2010, 285, 7977-7985.	3.4	133
5	Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways. Journal of Cellular Physiology, 2015, 230, 1758-1769.	4.1	116
6	Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Developmental Biology, 2016, 411, 172-182.	2.0	110
7	Ca ²⁺ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18543-18548.	7.1	104
8	Mouse Sperm Membrane Potential Hyperpolarization Is Necessary and Sufficient to Prepare Sperm for the Acrosome Reaction. Journal of Biological Chemistry, 2012, 287, 44384-44393.	3.4	102
9	Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Molecular Human Reproduction, 2013, 19, 570-580.	2.8	96
10	Compartmentalization of Distinct cAMP Signaling Pathways in Mammalian Sperm. Journal of Biological Chemistry, 2013, 288, 35307-35320.	3.4	88
11	cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit. Developmental Biology, 2012, 369, 43-53.	2.0	75
12	Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation. Journal of Cell Science, 2012, 125, 473-485.	2.0	62
13	PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Developmental Biology, 2015, 405, 237-249.	2.0	56
14	CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC. Journal of Biological Chemistry, 2018, 293, 9924-9936.	3.4	46
15	Lysine acetylation modulates mouse sperm capacitation. Scientific Reports, 2018, 8, 13334.	3.3	42
16	Transient exposure to calcium ionophore enables in vitro fertilization in sterile mouse models. Scientific Reports, 2016, 6, 33589.	3.3	40
17	Src Kinase Is the Connecting Player between Protein Kinase A (PKA) Activation and Hyperpolarization through SLO3 Potassium Channel Regulation in Mouse Sperm. Journal of Biological Chemistry, 2015, 290, 18855-18864.	3.4	39
18	Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation. Developmental Biology, 2011, 350, 80-88.	2.0	34

DARIO KRAPF

#	Article	IF	CITATIONS
19	Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. Journal of Cellular Physiology, 2018, 233, 9685-9700.	4.1	33
20	Disruption of protein kinase A localization induces acrosomal exocytosis in capacitated mouse sperm. Journal of Biological Chemistry, 2018, 293, 9435-9447.	3.4	32
21	Regulation mechanisms and implications of sperm membrane hyperpolarization. Mechanisms of Development, 2018, 154, 33-43.	1.7	26
22	Soluble adenylyl cyclase inhibition prevents human sperm functions essential for fertilization. Molecular Human Reproduction, 2021, 27, .	2.8	26
23	Membrane Potential Assessment by Fluorimetry as a Predictor Tool of Human Sperm Fertilizing Capacity. Frontiers in Cell and Developmental Biology, 2019, 7, 383.	3.7	25
24	Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nature Communications, 2016, 7, 10666.	12.8	23
25	Egg water from the amphibian Bufo arenarum induces capacitation-like changes in homologous spermatozoa. Developmental Biology, 2007, 306, 516-524.	2.0	21
26	Everything you ever wanted to know about PKA regulation and its involvement in mammalian sperm capacitation. Molecular and Cellular Endocrinology, 2020, 518, 110992.	3.2	19
27	Role of Actin Cytoskeleton During Mammalian Sperm Acrosomal Exocytosis. Advances in Anatomy, Embryology and Cell Biology, 2016, 220, 129-144.	1.6	17
28	Super-resolution imaging of live sperm reveals dynamic changes of the actin cytoskeleton during acrosomal exocytosis. Journal of Cell Science, 2018, 131, .	2.0	17
29	Determination of a Robust Assay for Human Sperm Membrane Potential Analysis. Frontiers in Cell and Developmental Biology, 2019, 7, 101.	3.7	17
30	A pore-forming toxin enables <i>Serratia</i> a nonlytic egress from host cells. Cellular Microbiology, 2017, 19, e12656.	2.1	16
31	Glycoproteins of the vitelline envelope of Amphibian oocyte: Biological and molecular characterization of ZPC component (gp41) inBufo arenarum. Molecular Reproduction and Development, 2007, 74, 629-640.	2.0	15
32	Lysophosphatidylcholine Drives Neuroblast Cell Fate. Molecular Neurobiology, 2016, 53, 6316-6331.	4.0	15
33	Egg Water from the Amphibian Bufo arenarum Modulates the Ability of Homologous Sperm to Undergo the Acrosome Reaction in the Presence of the Vitelline Envelope1. Biology of Reproduction, 2009, 80, 311-319.	2.7	14
34	Calcineurin Regulates Progressive Motility Activation of <i>Rhinella</i> (<i>Bufo</i>) <i>arenarum</i> Sperm Through Dephosphorylation of PKC Substrates. Journal of Cellular Physiology, 2014, 229, 1378-1386.	4.1	14
35	Seeing is believing: Current methods to observe sperm acrosomal exocytosis in real time. Molecular Reproduction and Development, 2020, 87, 1188-1198.	2.0	13
36	Characterization and biological properties of L-HGP, a glycoprotein from the amphibian oviduct with acrosome-stabilizing effects. Biology of the Cell, 2006, 98, 403-413.	2.0	11

DARIO KRAPF

#	Article	IF	CITATIONS
37	Membrane hyperpolarization abolishes calcium oscillations that prevent induced acrosomal exocytosis in human sperm. FASEB Journal, 2021, 35, e21478.	0.5	11
38	Human Sperm Remain Motile After a Temporary Energy Restriction but do Not Undergo Capacitation-Related Events. Frontiers in Cell and Developmental Biology, 2021, 9, 777086.	3.7	11
39	Male Decapacitation Factor SPINK3 Blocks Membrane Hyperpolarization and Calcium Entry in Mouse Sperm. Frontiers in Cell and Developmental Biology, 2020, 8, 575126.	3.7	8
40	Cdc42 localized in the CatSper signaling complex regulates cAMPâ€dependent pathways in mouse sperm. FASEB Journal, 2021, 35, e21723.	0.5	8
41	Selective blockage ofSerratia marcescensShlA by nickel inhibits the poreâ€forming toxinâ€mediated phenotypes in eukaryotic cells. Cellular Microbiology, 2019, 21, e13045.	2.1	6
42	βâ€hexosaminidase from <i>Xenopus laevis</i> eggs and oocytes: From gene to immunochemical characterization. Journal of Cellular Biochemistry, 2012, 113, 3709-3720.	2.6	2
43	Quantification of Protein Kinase A (PKA) Activity by An in vitro Radioactive Assay Using the Mouse Sperm Derived Enzyme. Bio-protocol, 2020, 10, e3658.	0.4	1
44	The early molecular events leading to COFILIN phosphorylation during mouse sperm capacitation are essential for acrosomal exocytosis. Journal of Biological Chemistry, 2022, , 101988.	3.4	0