
Franck Courchamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1247312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are the "100 of the world's worst―invasive species also the costliest?. Biological Invasions, 2022, 24, 1895-1904.	1.2	52
2	Modelling the damage costs of invasive alien species. Biological Invasions, 2022, 24, 1949-1972.	1.2	15
3	Knowledge gaps in economic costs of invasive alien fish worldwide. Science of the Total Environment, 2022, 803, 149875.	3.9	43
4	Economic costs of biological invasions in the United States. Science of the Total Environment, 2022, 806, 151318.	3.9	60
5	Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Science of the Total Environment, 2022, 813, 152325.	3.9	30
6	Invasive alien species as simultaneous benefits and burdens: trends, stakeholder perceptions and management. Biological Invasions, 2022, 24, 1905-1926.	1.2	29
7	Geographic and taxonomic trends of rising biological invasion costs. Science of the Total Environment, 2022, 817, 152948.	3.9	20
8	Surprisingly high economic costs of biological invasions in protected areas. Biological Invasions, 2022, 24, 1995-2016.	1.2	16
9	Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment, 2022, 819, 153404.	3.9	93
10	Societal extinction of species. Trends in Ecology and Evolution, 2022, 37, 411-419.	4.2	26
11	Economic costs of invasive bivalves in freshwater ecosystems. Diversity and Distributions, 2022, 28, 1010-1021.	1.9	26
12	Managing biological invasions: the cost of inaction. Biological Invasions, 2022, 24, 1927-1946.	1.2	36
13	Massive economic costs of biological invasions despite widespread knowledge gaps: a dual setback for India. Biological Invasions, 2022, 24, 2017-2039.	1.2	17
14	Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 2022, 103, e3719.	1.5	23
15	The magnitude, diversity, and distribution of the economic costs of invasive terrestrial invertebrates worldwide. Science of the Total Environment, 2022, 835, 155391.	3.9	21
16	Economic costs of invasive alien ants worldwide. Biological Invasions, 2022, 24, 2041-2060.	1.2	42
17	Introduction pathways of economically costly invasive alien species. Biological Invasions, 2022, 24, 2061-2079.	1.2	21
18	Ranking threats to biodiversity and why it doesn't matter. Nature Communications, 2022, 13, 2616.	5.8	31

#	Article	IF	CITATIONS
19	Analysing economic costs of invasive alien species with the <scp>invacost r</scp> package. Methods in Ecology and Evolution, 2022, 13, 1930-1937.	2.2	26
20	Industrial rearing of edible insects could be a major source of new biological invasions. Ecology Letters, 2021, 24, 393-397.	3.0	22
21	Influence of the Number of Queens on Nest Establishment: Native and Invasive Ant Species. Animals, 2021, 11, 591.	1.0	0
22	Mechanistic reconciliation of community and invasion ecology. Ecosphere, 2021, 12, e03359.	1.0	21
23	High and rising economic costs of biological invasions worldwide. Nature, 2021, 592, 571-576.	13.7	582
24	Invasion Culturomics and iEcology. Conservation Biology, 2021, 35, 447-451.	2.4	24
25	Non-English languages enrich scientific knowledge: The example of economic costs of biological invasions. Science of the Total Environment, 2021, 775, 144441.	3.9	108
26	Global economic costs of aquatic invasive alien species. Science of the Total Environment, 2021, 775, 145238.	3.9	183
27	Need for routine tracking of biological invasions. Conservation Biology, 2020, 34, 1311-1314.	2.4	36
28	Future climate change vulnerability of endemic island mammals. Nature Communications, 2020, 11, 4943.	5.8	23
29	What Will the Future Bring for Biological Invasions on Islands? An Expert-Based Assessment. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	33
30	Invasion costs, impacts, and human agency: response to Sagoff 2020. Conservation Biology, 2020, 34, 1579-1582.	2.4	26
31	Biodiversity loss, emerging pathogens and human health risks. Biodiversity and Conservation, 2020, 29, 3095-3102.	1.2	103
32	InvaCost, a public database of the economic costs of biological invasions worldwide. Scientific Data, 2020, 7, 277.	2.4	169
33	Invasion biology and uncertainty in native range definitions: response to Pereyra 2019. Conservation Biology, 2020, 34, 1041-1043.	2.4	9
34	Societal attention toward extinction threats: a comparison between climate change and biological invasions. Scientific Reports, 2020, 10, 11085.	1.6	16
35	Make Open Access Publishing Fair and Transparent!. BioScience, 2020, 70, 201-204.	2.2	3
36	The role of species charisma in biological invasions. Frontiers in Ecology and the Environment, 2020, 18, 345-353.	1.9	81

#	Article	IF	CITATIONS
37	iEcology: Harnessing Large Online Resources to Generate Ecological Insights. Trends in Ecology and Evolution, 2020, 35, 630-639.	4.2	129
38	The Native Ant Lasius niger Can Limit the Access to Resources of the Invasive Argentine Ant. Animals, 2020, 10, 2451.	1.0	8
39	On the overlap between scientific and societal taxonomic attentions — Insights for conservation. Science of the Total Environment, 2019, 648, 772-778.	3.9	40
40	Using Network Theory to Understand and Predict Biological Invasions. Trends in Ecology and Evolution, 2019, 34, 831-843.	4.2	63
41	Predicting future invaders and future invasions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7905-7910.	3.3	102
42	Are we eating the world's megafauna to extinction?. Conservation Letters, 2019, 12, e12627.	2.8	108
43	A Final Warning to Planet Earth. Trends in Ecology and Evolution, 2018, 33, 651-652.	4.2	10
44	Review: Allee effects in social species. Journal of Animal Ecology, 2018, 87, 47-58.	1.3	68
45	100 articles every ecologist should read. Nature Ecology and Evolution, 2018, 2, 395-401.	3.4	30
46	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	2.6	52
47	Satire for Conservation in the 21st Century. Trends in Ecology and Evolution, 2018, 33, 478-480.	4.2	5
48	The paradoxical extinction of the most charismatic animals. PLoS Biology, 2018, 16, e2003997.	2.6	109
49	Reply to â€ ⁻ Questionable survey methods generate a questionable list of recommended articles'. Nature Ecology and Evolution, 2018, 2, 1338-1339.	3.4	Ο
50	The twenty most charismatic species. PLoS ONE, 2018, 13, e0199149.	1.1	203
51	Insular threat associations within taxa worldwide. Scientific Reports, 2018, 8, 6393.	1.6	44
52	Can species distribution models really predict the expansion of invasive species?. PLoS ONE, 2018, 13, e0193085.	1.1	173
53	Invasion Biology: Specific Problems and Possible Solutions. Trends in Ecology and Evolution, 2017, 32, 13-22.	4.2	210
54	Predicting species distribution combining multi-scale drivers. Global Ecology and Conservation, 2017, 12, 215-226.	1.0	96

#	Article	IF	CITATIONS
55	Science responses to IUCN Red Listing. PeerJ, 2017, 5, e4025.	0.9	13
56	Major drivers of invasion risks throughout the world. Ecosphere, 2016, 7, e01241.	1.0	102
57	Vulnerability to climate change and sea-level rise of the 35th biodiversity hotspot, the Forests of East Australia. Environmental Conservation, 2016, 43, 79-89.	0.7	8
58	Pigeons home faster through polluted air. Scientific Reports, 2016, 6, 18989.	1.6	12
59	The genetic Allee effect: a unified framework for the genetics and demography of small populations. Ecosphere, 2016, 7, e01413.	1.0	41
60	virtualspecies, an R package to generate virtual species distributions. Ecography, 2016, 39, 599-607.	2.1	180
61	Massive yet grossly underestimated global costs of invasive insects. Nature Communications, 2016, 7, 12986.	5.8	546
62	Potentially threatened: a Data Deficient flag for conservation management. Biodiversity and Conservation, 2016, 25, 1995-2000.	1.2	25
63	Importance of lethal control of invasive predators for island conservation. Conservation Biology, 2016, 30, 670-672.	2.4	44
64	Colony–colony interactions between highly invasive ants. Basic and Applied Ecology, 2016, 17, 106-114.	1.2	6
65	Invasive mammal eradication on islands results in substantial conservation gains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4033-4038.	3.3	365
66	Data mining in conservation research using Latin and vernacular species names. PeerJ, 2016, 4, e2202.	0.9	27
67	Discovery–dominance tradeâ€off among widespread invasive ant species. Ecology and Evolution, 2015, 5, 2673-2683.	0.8	23
68	Combined impacts of global changes on biodiversity across the USA. Scientific Reports, 2015, 5, 11828.	1.6	19
69	Back to the fundamentals: a reply to Barot et al Trends in Ecology and Evolution, 2015, 30, 370-371.	4.2	2
70	Adapting island conservation to climate change. Response to Andréfouët et al Trends in Ecology and Evolution, 2015, 30, 2-3.	4.2	4
71	Worldwide ant invasions under climate change. Biodiversity and Conservation, 2015, 24, 117-128.	1.2	66
72	Different behavioural strategies among seven highly invasive ant species. Biological Invasions, 2015, 17, 2491-2503.	1.2	32

#	Article	IF	CITATIONS
73	Overcoming extinction: understanding processes of recovery of the Tibetan antelope. Ecosphere, 2015, 6, 1-14.	1.0	34
74	Assessing current and future risks of invasion by the "green cancer―Miconia calvescens. Biological Invasions, 2015, 17, 3337-3350.	1.2	4
75	Fundamental ecology is fundamental. Trends in Ecology and Evolution, 2015, 30, 9-16.	4.2	61
76	Future ant invasions in France. Environmental Conservation, 2014, 41, 217-228.	0.7	18
77	Impact of sea level rise on the 10 insular biodiversity hotspots. Global Ecology and Biogeography, 2014, 23, 203-212.	2.7	113
78	The 100th of the world's worst invasive alien species. Biological Invasions, 2014, 16, 981-985.	1.2	165
79	The end of Invasion Biology: intellectual debate does not equate to nonsensical science. Biological Invasions, 2014, 16, 977-979.	1.2	14
80	Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends in Ecology and Evolution, 2014, 29, 127-130.	4.2	116
81	Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 2014, 23, 1376-1386.	2.7	282
82	Do social groups prevent Allee effect related extinctions?: The case of wild dogs. Frontiers in Zoology, 2013, 10, 11.	0.9	27
83	Monster fern makes IUCN invader list. Nature, 2013, 498, 37-37.	13.7	11
84	Global warming may freeze the invasion of big-headed ants. Biological Invasions, 2013, 15, 1561-1572.	1.2	18
85	The impact of climate change changes over time. Biological Conservation, 2013, 167, 107-115.	1.9	4
86	Will climate change promote future invasions?. Global Change Biology, 2013, 19, 3740-3748.	4.2	477
87	Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 2013, 28, 58-66.	4.2	2,304
88	Legal Trade of Africa's Rhino Horns. Science, 2013, 339, 1038-1039.	6.0	176
89	Allee effects in ants. Journal of Animal Ecology, 2013, 82, 956-965.	1.3	37
90	Rhino Poaching: Supply and Demand Uncertain—Response. Science, 2013, 340, 1168-1169.	6.0	2

#	Article	IF	CITATIONS
91	Increase in Quantity and Quality of Suitable Areas for Invasive Species as Climate Changes. Conservation Biology, 2013, 27, 1458-1467.	2.4	34
92	Climate Change May Boost the Invasion of the Asian Needle Ant. PLoS ONE, 2013, 8, e75438.	1.1	35
93	Non-Adaptive Phenotypic Evolution of the Endangered Carnivore Lycaon pictus. PLoS ONE, 2013, 8, e73856.	1.1	8
94	On the use of the IUCN status for the management of trophy hunting. Wildlife Research, 2012, 39, 711.	0.7	5
95	Rarity, trophy hunting and ungulates. Animal Conservation, 2012, 15, 4-11.	1.5	53
96	Response: rarity, trophy hunting and ungulates. Animal Conservation, 2012, 15, 16-17.	1.5	2
97	Island prioritization for invasive rodent eradications with an emphasis on reinvasion risk. Biological Invasions, 2012, 14, 1251-1263.	1.2	37
98	The rarity and overexploitation paradox: stag beetle collections in Japan. Biodiversity and Conservation, 2012, 21, 1425-1440.	1.2	27
99	Noisy clocks and silent sunrises: measurement methods of daily activity pattern. Journal of Zoology, 2012, 286, 179-184.	0.8	91
100	Impacts of climate change on the future of biodiversity. Ecology Letters, 2012, 15, 365-377.	3.0	2,720
101	Ant community structure on a small Pacific island: only one native species living with the invaders. Biological Invasions, 2012, 14, 323-339.	1.2	25
102	Seabird Modulations of Isotopic Nitrogen on Islands. PLoS ONE, 2012, 7, e39125.	1.1	52
103	Challenges for biodiversity research in Europe. Procedia, Social and Behavioral Sciences, 2011, 13, 83-100.	0.5	8
104	Deciphering complex relationships between apparently unrelated species. Animal Conservation, 2011, 14, 468-470.	1.5	4
105	Cat Dilemma: Too Protected To Escape Trophy Hunting?. PLoS ONE, 2011, 6, e22424.	1.1	19
106	Limited evidence for the demographic Allee effect from numerous species across taxa. Ecology, 2010, 91, 2151-2161.	1.5	84
107	Safety in numbers: extinction arising from predatorâ€driven Allee effects. Journal of Animal Ecology, 2010, 79, 511-514.	1.3	18
108	Trophic experiments to estimate isotope discrimination factors. Journal of Applied Ecology, 2010, 47, 948-954.	1.9	35

#	Article	IF	CITATIONS
109	Rare Species Are Valued Big Time. PLoS ONE, 2009, 4, e5215.	1.1	46
110	Fatal attraction: rare species in the spotlight. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1331-1337.	1.2	52
111	Dangerously few liaisons: a review of mateâ€finding Allee effects. Population Ecology, 2009, 51, 355-372.	0.7	252
112	Avoiding surprise effects on Surprise Island: alien species control in a multitrophic level perspective. Biological Invasions, 2009, 11, 1689-1703.	1.2	65
113	Variation in discrimination factors (Δ ¹⁵ N and Δ ¹³ C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 2009, 46, 443-453.	1.9	1,159
114	Are non-sexual models appropriate for predicting the impact of virus-vectored immunocontraception?. Journal of Theoretical Biology, 2008, 250, 281-290.	0.8	6
115	Discrimination factors (Δ15N and Δ13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology, 2008, 22, 255-263.	1.7	161
116	Dietary shift of an invasive predator: rats, seabirds and sea turtles. Journal of Applied Ecology, 2008, 45, 428-437.	1.9	155
117	Consumers' taste for rarity drives sturgeons to extinction. Conservation Letters, 2008, 1, 199-207.	2.8	47
118	Endangering the endangered: The effects of perceived rarity on species exploitation. Conservation Letters, 2008, 1, 75-81.	2.8	126
119	Achilles' Heel of Sociality Revealed by Energetic Poverty Trap in Cursorial Hunters. American Naturalist, 2008, 172, 508-518.	1.0	63
120	Caution on isotopic model use for analyses of consumer diet. Canadian Journal of Zoology, 2008, 86, 438-445.	0.4	110
121	Less is more: rarity trumps quality in luxury markets. Nature Precedings, 2008, , .	0.1	1
122	What are Allee effects?. , 2008, , 1-17.		8
123	Population dynamics: modelling demographic Allee effects. , 2008, , 62-130.		Ο
124	Multiple Allee effects and population management. Trends in Ecology and Evolution, 2007, 22, 185-191.	4.2	497
125	INVADING PARASITOIDS SUFFER NO ALLEE EFFECT: A MANIPULATIVE FIELD EXPERIMENT. Ecology, 2007, 88, 2392-2403.	1.5	45
126	Importance of the Allee effect for reintroductions. Ecoscience, 2007, 14, 440-451.	0.6	115

#	Article	IF	CITATIONS
127	Can bans stimulate wildlife trade?. Nature, 2007, 447, 529-530.	13.7	127
128	Rats dying for mice: Modelling the competitor release effect. Austral Ecology, 2007, 32, 858-868.	0.7	113
129	Double Allee Effects and Extinction in the Island Fox. Conservation Biology, 2007, 21, 1082-1091.	2.4	113
130	COUPLING STABLE ISOTOPES WITH BIOENERGETICS TO ESTIMATE INTERSPECIFIC INTERACTIONS. , 2006, 16, 1893-1900.		24
131	Combined impacts of Allee effects and parasitism. Oikos, 2006, 112, 667-679.	1.2	49
132	Rarity Value and Species Extinction: The Anthropogenic Allee Effect. PLoS Biology, 2006, 4, e415.	2.6	432
133	Removing Protected Populations to Save Endangered Species. Science, 2003, 302, 1532-1532.	6.0	91
134	Mammal invaders on islands: impact, control and control impact. Biological Reviews, 2003, 78, 347-383.	4.7	813
135	Small pack size imposes a trade-off between hunting and pup-guarding in the painted hunting dog Lycaon pictus. Behavioral Ecology, 2002, 13, 20-27.	1.0	130
136	Golden eagles, feral pigs, and insular carnivores: How exotic species turn native predators into prey. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 791-796.	3.3	346
137	Crucial importance of pack size in the African wild dog Lycaon pictus. Animal Conservation, 2001, 4, 169-174.	1.5	186
138	Transmission of Feline Immunodeficiency Virus in a population of cats (Felis catus). Wildlife Research, 2000, 27, 603.	0.7	33
139	Rabbits killing birds: modelling the hyperpredation process. Journal of Animal Ecology, 2000, 69, 154-164.	1.3	204
140	Virus-vectored immunocontraception to control feral cats on islands: a mathematical model. Journal of Applied Ecology, 2000, 37, 903-913.	1.9	55
141	Impact of natural enemies on obligately cooperative breeders. Oikos, 2000, 91, 311-322.	1.2	116
142	Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus. Animal Conservation, 2000, 3, 277-285.	1.5	105
143	DETECTION, IDENTIFICATION, AND CORRECTION OF A BIAS IN AN EPIDEMIOLOGICAL STUDY. Journal of Wildlife Diseases, 2000, 36, 71-78.	0.3	8
144	Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus. , 2000, 3, 277.		66

#	Article	IF	CITATIONS
145	Population dynamics of obligate cooperators. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 557-563.	1.2	122
146	Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology, 1999, 68, 282-292.	1.3	284
147	MODELING THE BIOLOGICAL CONTROL OF AN ALIEN PREDATOR TO PROTECT ISLAND SPECIES FROM EXTINCTION. , 1999, 9, 112-123.		91
148	Inverse density dependence and the Allee effect. Trends in Ecology and Evolution, 1999, 14, 405-410.	4.2	1,429
149	Control of rabbits to protect island birds from cat predation. Biological Conservation, 1999, 89, 219-225.	1.9	114
150	Retroviruses and sexual size dimorphism in domestic cats (Felis catus L.). Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 167-173.	1.2	46
151	At-risk individuals in Feline Immunodeficiency Virus epidemiology: evidence from a multivariate approach in a natural population of domestic cats (Felis catus). Epidemiology and Infection, 1998, 121, 227-236.	1.0	42
152	Infection strategies of retroviruses and social grouping of domestic cats. Canadian Journal of Zoology, 1997, 75, 1994-2002.	0.4	16
153	Dynamics of two feline retroviruses (FIV and FeLV) within one population of cats. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 785-794.	1.2	20
154	Modelling the Feline Leukemia Virus (FeLV) in Natural Populations of Cats (Felis catus). Theoretical Population Biology, 1997, 52, 60-70.	0.5	32
155	Population dynamics of feline immunodeficiency virus within cat populations. Journal of Theoretical Biology, 1995, 175, 553-560.	0.8	49
156	Impact of two feline retroviruses on natural populations of domestic cat. Mammalia, 1995, 59, .	0.3	6
157	MODELLING THE FELINE IMMUNODEFICIENCY VIRUS WITHIN POPULATIONS OF DOMESTIC CATS (Felis catus). Journal of Biological Systems, 1995, 03, 769-777.	0.5	Ο
158	Feline immunodeficiency virus: an epidemiological review. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1994, 317, 1123-34.	0.8	22
159	Economic impact of invasive alien species in Argentina: a first national synthesis. NeoBiota, 0, 67, 329-348.	1.0	19
160	The recorded economic costs of alien invasive species in Italy. NeoBiota, 0, 67, 247-266.	1.0	15
161	Economic costs of invasive alien species in Mexico. NeoBiota, 0, 67, 459-483.	1.0	19
162	Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota, 0, 67, 511-550.	1.0	58

#	Article	IF	CITATIONS
163	Economic costs of biological invasions in Asia. NeoBiota, 0, 67, 53-78.	1.0	42
164	Economic costs of invasive species in Germany. NeoBiota, 0, 67, 225-246.	1.0	27
165	Biological invasions in Singapore and Southeast Asia: data gaps fail to mask potentially massive economic costs. NeoBiota, 0, 67, 131-152.	1.0	13
166	First synthesis of the economic costs of biological invasions in Japan. NeoBiota, 0, 67, 79-101.	1.0	22
167	Economic costs of biological invasions in Ecuador: the importance of the Galapagos Islands. NeoBiota, 0, 67, 375-400.	1.0	15
168	The economic costs of biological invasions in Africa: a growing but neglected threat?. NeoBiota, 0, 67, 11-51.	1.0	40
169	Economic costs of invasive alien species in the Mediterranean basin. NeoBiota, 0, 67, 427-458.	1.0	44
170	Economic costs of invasive alien species in Spain. NeoBiota, 0, 67, 267-297.	1.0	31
171	The economic costs of biological invasions in Brazil: a first assessment. NeoBiota, 0, 67, 349-374.	1.0	39
172	Economic costs of biological invasions within North America. NeoBiota, 0, 67, 485-510.	1.0	55
173	Economic costs of biological invasions in terrestrial ecosystems in Russia. NeoBiota, 0, 67, 103-130.	1.0	18
174	Biological invasions in France: Alarming costs and even more alarming knowledge gaps. NeoBiota, 0, 67, 191-224.	1.0	36
175	Economic costs of biological invasions in the United Kingdom. NeoBiota, 0, 67, 299-328.	1.0	38
176	The economic costs of biological invasions in Central and South America: a first regional assessment. NeoBiota, 0, 67, 401-426.	1.0	40
177	Economic costs of invasive alien species across Europe. NeoBiota, 0, 67, 153-190.	1.0	148
178	Potential impact of sea level rise on French islands worldwide. Nature Conservation, 0, 5, 75-86.	0.0	12
179	Biological invasions and natural colonisations: are they that different?. NeoBiota, 0, 29, 1-14.	1.0	50
180	When similarities matter more than differences: a reply to Wilson et al NeoBiota, 0, 31, 99-104.	1.0	2

#	Article	IF	CITATIONS
181	Introducing AlienScenarios: a project to develop scenarios and models of biological invasions for the 21 st century. NeoBiota, 0, 45, 1-17.	1.0	17
182	The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota, 0, 55, 11-25.	1.0	44
183	What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise. NeoBiota, 0, 63, 25-37.	1.0	70
184	Gender bias when assessing recommended ecology articles. Rethinking Ecology, 0, 3, 1-12.	0.0	7