John T Ashburner

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1247211/john-t-ashburner-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 185 54,288 207 h-index g-index citations papers 61,634 8.03 207 7.1 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
185	Restoring statistical validity in group analyses of motion-corrupted MRI data <i>Human Brain Mapping</i> , 2022 ,	5.9	4
184	Simultaneous assessment of regional distributions of atrophy across the neuraxis in MS patients <i>NeuroImage: Clinical</i> , 2022 , 34, 102985	5.3	0
183	Factorisation-Based Image Labelling Frontiers in Neuroscience, 2021 , 15, 818604	5.1	O
182	Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging. <i>NeuroImage</i> , 2021 , 232, 117821	7.9	1
181	Microstructural plasticity in nociceptive pathways after spinal cord injury. <i>Journal of Neurology,</i> Neurosurgery and Psychiatry, 2021 ,	5.5	2
180	Simultaneous voxel-wise analysis of brain and spinal cord morphometry and microstructure within the SPM framework. <i>Human Brain Mapping</i> , 2021 , 42, 220-232	5.9	3
179	Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. <i>NeuroImage</i> , 2021 , 238, 118231	7.9	1
178	Model-based multi-parameter mapping. <i>Medical Image Analysis</i> , 2021 , 73, 102149	15.4	0
177	A Symmetric Prior for the Regularisation of Elastic Deformations: Improved anatomical plausibility in nonlinear image registration. <i>NeuroImage</i> , 2020 , 219, 116962	7.9	3
176	The influence of microsatellite polymorphisms in sex steroid receptor genes ESR1, ESR2 and AR on sex differences in brain structure. <i>NeuroImage</i> , 2020 , 221, 117087	7.9	2
175	Flexible Bayesian Modelling for Nonlinear Image Registration. <i>Lecture Notes in Computer Science</i> , 2020 , 253-263	0.9	4
174	An Image Registration-Based Method for EPI Distortion Correction Based on Opposite Phase Encoding (COPE). <i>Lecture Notes in Computer Science</i> , 2020 , 122-130	0.9	3
173	Efficacy of spoken word comprehension therapy in patients with chronic aphasia: a cross-over randomised controlled trial with structural imaging. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2020 ,	5.5	6
172	Identification of neurobehavioural symptom groups based on shared brain mechanisms. <i>Nature Human Behaviour</i> , 2019 , 3, 1306-1318	12.8	10
171	hMRI - A toolbox for quantitative MRI in neuroscience and clinical research. <i>NeuroImage</i> , 2019 , 194, 191	- 2 :1 ₉ 0	73
170	Nonlinear Markov Random Fields Learned via Backpropagation. <i>Lecture Notes in Computer Science</i> , 2019 , 805-817	0.9	2
169	An algorithm for learning shape and appearance models without annotations. <i>Medical Image Analysis</i> , 2019 , 55, 197-215	15.4	5

(2017-2019)

168	A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning. <i>Medical Image Analysis</i> , 2019 , 54, 220-237	15.4	16	
167	Example dataset for the hMRI toolbox. <i>Data in Brief</i> , 2019 , 25, 104132	1.2	12	
166	Bayesian Volumetric Autoregressive Generative Models for Better Semisupervised Learning. Lecture Notes in Computer Science, 2019 , 429-437	0.9	1	
165	Empirical Bayesian Mixture Models for Medical Image Translation. <i>Lecture Notes in Computer Science</i> , 2019 , 1-12	0.9	1	
164	Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. <i>Neurology</i> , 2018 , 90, e1257-e1266	6.5	61	
163	Connectivity derived thalamic segmentation in deep brain stimulation for tremor. <i>NeuroImage: Clinical</i> , 2018 , 18, 130-142	5.3	98	
162	Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction. <i>NeuroImage</i> , 2018 , 166, 117-134	7.9	16	
161	A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods. <i>NeuroImage</i> , 2018 , 178, 753-768	7.9	18	
160	Diffeomorphic Brain Shape Modelling Using Gauss-Newton Optimisation. <i>Lecture Notes in Computer Science</i> , 2018 , 862-870	0.9	1	
159	MRI Super-Resolution Using Multi-channel Total Variation. <i>Communications in Computer and Information Science</i> , 2018 , 217-228	0.3	8	
158	Author response: Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. <i>Neurology</i> , 2018 , 91, 985	6.5	5	
157	l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease. <i>Movement Disorders</i> , 2017 , 32, 874-883	7	28	
156	OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis. <i>NeuroImage</i> , 2017 , 156, 489-503	7.9	37	
155	Spinal cord grey matter segmentation challenge. <i>NeuroImage</i> , 2017 , 152, 312-329	7.9	64	
154	Multivariate dynamical modelling of structural change during development. <i>NeuroImage</i> , 2017 , 147, 74	6 <i>-</i> 7. 6 2	16	
153	Optimal deep brain stimulation site and target connectivity for chronic cluster headache. <i>Neurology</i> , 2017 , 89, 2083-2091	6.5	42	
152	Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. <i>NeuroImage</i> , 2017 , 158, 332-345	7.9	131	
151	Real-time fMRI data for testing OpenNFT functionality. <i>Data in Brief</i> , 2017 , 14, 344-347	1.2	9	

150	Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury. <i>NeuroImage: Clinical</i> , 2017 , 15, 494-501	5.3	6
149	Embodied neurology: an integrative framework for neurological disorders. <i>Brain</i> , 2016 , 139, 1855-61	11.2	32
148	The first step for neuroimaging data analysis: DICOM to NIfTI conversion. <i>Journal of Neuroscience Methods</i> , 2016 , 264, 47-56	3	279
147	Leveraging Clinical Data to Enhance Localization of Brain Atrophy. <i>Lecture Notes in Computer Science</i> , 2016 , 60-68	0.9	
146	Variational inference for medical image segmentation. <i>Computer Vision and Image Understanding</i> , 2016 , 151, 14-28	4.3	10
145	Preparing fMRI Data for Statistical Analysis. <i>Neuromethods</i> , 2016 , 155-181	0.4	1
144	Neurobiological origin of spurious brain morphological changes: A quantitative MRI study. <i>Human Brain Mapping</i> , 2016 , 37, 1801-15	5.9	62
143	Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. <i>NeuroImage</i> , 2015 , 104, 366-72	7.9	276
142	Diffeomorphic Image Registration 2015 , 315-321		
141	Tensor-Based Morphometry 2015 , 383-394		2
141	Tensor-Based Morphometry 2015 , 383-394 Computing Brain Change over Time 2015 , 417-428		2
		2.7	
140	Computing Brain Change over Time 2015 , 417-428 Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood:	2.7 9.4	1
140 139	Computing Brain Change over Time 2015 , 417-428 Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study. <i>Clinical Neuroradiology</i> , 2015 , 25, 19-32 Tracking sensory system atrophy and outcome prediction in spinal cord injury. <i>Annals of Neurology</i> ,	<i>'</i>	1
140 139 138	Computing Brain Change over Time 2015, 417-428 Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study. <i>Clinical Neuroradiology</i> , 2015, 25, 19-32 Tracking sensory system atrophy and outcome prediction in spinal cord injury. <i>Annals of Neurology</i> , 2015, 78, 751-61 Objective Bayesian fMRI analysis-a pilot study in different clinical environments. <i>Frontiers in</i>	9.4	1 17 57
140 139 138	Computing Brain Change over Time 2015, 417-428 Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study. <i>Clinical Neuroradiology</i> , 2015, 25, 19-32 Tracking sensory system atrophy and outcome prediction in spinal cord injury. <i>Annals of Neurology</i> , 2015, 78, 751-61 Objective Bayesian fMRI analysis-a pilot study in different clinical environments. <i>Frontiers in Neuroscience</i> , 2015, 9, 168	9.4	1 17 57 4
140 139 138 137	Computing Brain Change over Time 2015, 417-428 Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study. <i>Clinical Neuroradiology</i> , 2015, 25, 19-32 Tracking sensory system atrophy and outcome prediction in spinal cord injury. <i>Annals of Neurology</i> , 2015, 78, 751-61 Objective Bayesian fMRI analysis-a pilot study in different clinical environments. <i>Frontiers in Neuroscience</i> , 2015, 9, 168 Multivariate Effect Ranking via Adaptive Sparse PLS 2015, A Comparison of Strategies for Incorporating Nuisance Variables into Predictive Neuroimaging	9.4	1 17 57 4 2

(2011-2014)

132	Disentangling in vivo the effects of iron content and atrophy on the ageing human brain. <i>Neurolmage</i> , 2014 , 103, 280-289	7.9	47
131	A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. <i>Neuroinformatics</i> , 2014 , 12, 575-93	3.2	177
130	PRoNTo: pattern recognition for neuroimaging toolbox. <i>Neuroinformatics</i> , 2013 , 11, 319-37	3.2	268
129	Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. <i>Journal of Neurology</i> , 2013 , 260, 2458-71	5.5	83
128	MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. <i>Lancet Neurology, The</i> , 2013 , 12, 873-881	24.1	178
127	Multivariate decoding of brain images using ordinal regression. <i>NeuroImage</i> , 2013 , 81, 347-357	7.9	19
126	Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians. <i>NeuroImage: Clinical</i> , 2013 , 2, 684-94	5.3	48
125	Wrapper Methods to Correct Mislabelled Training Data 2013,		6
124	Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. <i>Frontiers in Human Neuroscience</i> , 2013 , 7, 462	3.3	43
123	Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach. <i>PLoS ONE</i> , 2013 , 8, e69237	3.7	34
122	Parametric non-rigid registration using a stationary velocity field 2012 ,		21
121	SPM: a history. <i>Neurolmage</i> , 2012 , 62, 791-800	7.9	277
120	Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. <i>NeuroImage</i> , 2012 , 60, 83-94	7.9	246
119	Symmetric diffeomorphic modeling of longitudinal structural MRI. <i>Frontiers in Neuroscience</i> , 2012 , 6, 197	5.1	203
118	Classification of Alzheimer's disease patients and controls with Gaussian processes 2012,		3
117	Data sharing in neuroimaging research. Frontiers in Neuroinformatics, 2012, 6, 9	3.9	171
116	Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). <i>NeuroImage</i> , 2011 , 55, 1423-34	7.9	204
115	Utilizing temporal information in fMRI decoding: classifier using kernel regression methods. Neurolmage, 2011 , 58, 560-71	7.9	22

114	Kernel regression for fMRI pattern prediction. <i>NeuroImage</i> , 2011 , 56, 662-73	7.9	55
113	Multivariate models of inter-subject anatomical variability. <i>NeuroImage</i> , 2011 , 56, 422-39	7.9	34
112	Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT). <i>NeuroImage</i> , 2011 , 54, 2116-24	7.9	121
111	Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. <i>NeuroImage</i> , 2011 , 55, 954-67	7.9	231
110	Measuring the Consistency of Global Functional Connectivity Using Kernel Regression Methods 2011 ,		2
109	Log-Euclidean free-form deformation 2011 ,		5
108	Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2. <i>NeuroImage</i> , 2010 , 53, 1030-42	7.9	89
107	Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. <i>NeuroImage</i> , 2010 , 51, 1405-13	7.9	193
106	Classification of Neurodegenerative Diseases Using Gaussian Process Classification with Automatic Feature Determination 2010 ,		2
105	Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease. <i>Neurology</i> , 2009 , 72, 426-31	6.5	81
104	Structural correlates of preterm birth in the adolescent brain. <i>Pediatrics</i> , 2009 , 124, e964-72	7.4	85
103	Computational anatomy with the SPM software. <i>Magnetic Resonance Imaging</i> , 2009 , 27, 1163-74	3.3	350
102	Atrophy progression in semantic dementia with asymmetric temporal involvement: a tensor-based morphometry study. <i>Neurobiology of Aging</i> , 2009 , 30, 103-11	5.6	160
101	Computing average shaped tissue probability templates. <i>NeuroImage</i> , 2009 , 45, 333-41	7.9	172
100	Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. <i>NeuroImage</i> , 2009 , 46, 786-802	7.9	1603
99	Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. <i>Neurolmage</i> , 2009 , 47, 194-8	7.9	143
98	Genotype-phenotype interactions in primary dystonias revealed by differential changes in brain structure. <i>Neurolmage</i> , 2009 , 47, 1141-7	7.9	53
97	A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. <i>NeuroImage</i> , 2009 , 48, 371-80	7.9	420

96	Voxel Based Morphometry 2009 , 471-477		3
95	Prognostic and diagnostic potential of the structural neuroanatomy of depression. <i>PLoS ONE</i> , 2009 , 4, e6353	3.7	173
94	Preparing fMRI Data for Statistical Analysis. <i>Neuromethods</i> , 2009 , 151-178	0.4	3
93	Dynamic positron emission tomography data-driven analysis using sparse Bayesian learning. <i>IEEE Transactions on Medical Imaging</i> , 2008 , 27, 1356-69	11.7	17
92	Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. <i>Journal of Neuroscience</i> , 2008 , 28, 7143-52	6.6	576
91	Voxel-wise analysis of diffusion tensor MRI improves the confidence of diagnosis of corticobasal degeneration non-invasively. <i>Parkinsonism and Related Disorders</i> , 2008 , 14, 436-9	3.6	7
90	Bayesian decoding of brain images. <i>Neurolmage</i> , 2008 , 39, 181-205	7.9	155
89	Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease. Neurolmage, 2008, 39, 1180-5	7.9	175
88	Voxel-based cortical thickness measurements in MRI. <i>NeuroImage</i> , 2008 , 40, 1701-10	7.9	153
87	Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. <i>NeuroImage</i> , 2008 , 43, 44-58	7.9	398
86	Kernel methods for fMRI pattern prediction 2008,		1
85	A plea for confidence intervals and consideration of generalizability in diagnostic studies. <i>Brain</i> , 2008 , 132, e102-e102	11.2	9
84	Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. <i>Brain</i> , 2008 , 131, 2969-74	11.2	166
83	fMRI activity patterns in human LOC carry information about object exemplars within category. <i>Journal of Cognitive Neuroscience</i> , 2008 , 20, 356-70	3.1	146
82	Automatic classification of MR scans in Alzheimer's disease. <i>Brain</i> , 2008 , 131, 681-9	11.2	847
81	A fast diffeomorphic image registration algorithm. <i>NeuroImage</i> , 2007 , 38, 95-113	7.9	5328
80	Rigid Body Registration 2007 , 49-62		32
79	Non-linear Registration 2007 , 63-80		8

78	Voxel-Based Morphometry 2007 , 92-98		14
77	A tensor based morphometry study of longitudinal gray matter contraction in FTD. <i>NeuroImage</i> , 2007 , 35, 998-1003	7.9	75
76	Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. <i>NeuroImage</i> , 2007 , 37, 866-75	7.9	219
75	Diffusion-based spatial priors for imaging. <i>NeuroImage</i> , 2007 , 38, 677-95	7.9	60
74	Variational free energy and the Laplace approximation. <i>NeuroImage</i> , 2007 , 34, 220-34	7.9	557
73	Segmentation 2007 , 81-91		6
72	Unified segmentation. <i>Neurolmage</i> , 2005 , 26, 839-51	7.9	5615
71	The role of the medial temporal lobe in autistic spectrum disorders. <i>European Journal of Neuroscience</i> , 2005 , 22, 764-72	3.5	86
7º	Early visual deprivation induces structural plasticity in gray and white matter. <i>Current Biology</i> , 2005 , 15, R488-90	6.3	139
69	Voxel-Based Morphometry of the Human Brain: Methods and Applications. <i>Current Medical Imaging</i> , 2005 , 1, 105-113	1.2	566
68	Progression of structural neuropathology in preclinical Huntington's disease: a tensor based morphometry study. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2005 , 76, 650-5	5.5	136
67	Rigid Body Registration 2004 , 635-653		2
66	Neurolinguistics: structural plasticity in the bilingual brain. <i>Nature</i> , 2004 , 431, 757	50.4	644
65	Generative and recognition models for neuroanatomy. <i>NeuroImage</i> , 2004 , 23, 21-4	7.9	116
64	Spatial Normalisation Using Basis Functions 2004 , 655-672		1
63	High-Dimensional Image Warping 2004 , 673-694		5
62	Image Segmentation 2004 , 695-706		1
61	Morphometry 2004 , 707-722		1

(2001-2003)

60	Dosage-sensitive X-linked locus influences the development of amygdala and orbitofrontal cortex, and fear recognition in humans. <i>Brain</i> , 2003 , 126, 2431-46	11.2	154
59	Computer-assisted imaging to assess brain structure in healthy and diseased brains. <i>Lancet Neurology, The</i> , 2003 , 2, 79-88	24.1	312
58	Changes in cerebral morphology consequent to peripheral autonomic denervation. <i>NeuroImage</i> , 2003 , 18, 908-16	7.9	26
57	Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. <i>NeuroImage</i> , 2003 , 19, 200-7	7.9	631
56	How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. <i>NeuroImage</i> , 2003 , 20, 870-88	7.9	1557
55	MRI analysis of an inherited speech and language disorder: structural brain abnormalities. <i>Brain</i> , 2002 , 125, 465-78	11.2	321
54	Functional magnetic resonance imaging technology and traumatic brain injury rehabilitation: guidelines for methodological and conceptual pitfalls. <i>Journal of Head Trauma Rehabilitation</i> , 2002 , 17, 411-30	3	26
53	Image distortion correction in fMRI: A quantitative evaluation. NeuroImage, 2002, 16, 217-40	7.9	530
52	Classical and Bayesian inference in neuroimaging: theory. NeuroImage, 2002, 16, 465-83	7.9	456
51	Classical and Bayesian inference in neuroimaging: applications. <i>NeuroImage</i> , 2002 , 16, 484-512	7.9	576
50	The precision of anatomical normalization in the medial temporal lobe using spatial basis functions. <i>NeuroImage</i> , 2002 , 17, 507-12	7.9	57
49	Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. <i>NeuroImage</i> , 2002 , 17, 29-46	7.9	360
48	Gene deletion mapping of the X chromosome. <i>NeuroImage</i> , 2001 , 13, 793	7.9	4
47	Assessing study-specific regional variations in fMRI signal. <i>NeuroImage</i> , 2001 , 13, 392-8	7.9	48
46	Voxel-based morphometry of herpes simplex encephalitis. <i>NeuroImage</i> , 2001 , 13, 623-31	7.9	87
45	Modeling geometric deformations in EPI time series. <i>NeuroImage</i> , 2001 , 13, 903-19	7.9	678
44	A global estimator unbiased by local changes. <i>NeuroImage</i> , 2001 , 13, 1193-206	7.9	25
43	A voxel-based morphometric study of ageing in 465 normal adult human brains. <i>NeuroImage</i> , 2001 , 14, 21-36	7.9	3734

42	Spatial normalization of brain images with focal lesions using cost function masking. <i>NeuroImage</i> , 2001 , 14, 486-500	7.9	712
41	Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. <i>NeuroImage</i> , 2001 , 14, 685-700	7.9	1060
40	Learning arbitrary visuomotor associations: temporal dynamic of brain activity. <i>NeuroImage</i> , 2001 , 14, 1048-57	7.9	170
39	Why voxel-based morphometry should be used. <i>NeuroImage</i> , 2001 , 14, 1238-43	7.9	669
38	Image registration using a symmetric priorin three dimensions. Human Brain Mapping, 2000, 9, 212-25	5.9	141
37	Detecting bilateral abnormalities with voxel-based morphometry. Human Brain Mapping, 2000, 11, 223-	33 .9	45
36	A voxel-based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory. <i>Annals of Neurology</i> , 2000 , 47, 36-45	9.4	800
35	Representation of the temporal envelope of sounds in the human brain. <i>Journal of Neurophysiology</i> , 2000 , 84, 1588-98	3.2	263
34	Learning- and expectation-related changes in the human brain during motor learning. <i>Journal of Neurophysiology</i> , 2000 , 84, 3026-35	3.2	109
33	Navigation-related structural change in the hippocampi of taxi drivers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 4398-403	11.5	2108
32	Voxel-based morphometrythe methods. <i>NeuroImage</i> , 2000 , 11, 805-21	7.9	6561
31	Characterization and correction of interpolation effects in the realignment of fMRI time series. <i>NeuroImage</i> , 2000 , 11, 49-57	7.9	88
30	Optimization of 3-D MP-RAGE sequences for structural brain imaging. <i>NeuroImage</i> , 2000 , 12, 112-27	7.9	162
29	Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [(18)F]dopa-PET study. <i>Brain</i> , 1999 , 122 (Pt 9), 1637-50	11.2	228
28	Functional neuroimaging of speech perception in six normal and two aphasic subjects. <i>Journal of the Acoustical Society of America</i> , 1999 , 106, 449-57	2.2	164
27	Correlation between structural and functional changes in brain in an idiopathic headache syndrome. <i>Nature Medicine</i> , 1999 , 5, 836-8	50.5	446
26	Nonlinear spatial normalization using basis functions. <i>Human Brain Mapping</i> , 1999 , 7, 254-66	5.9	1470
25	Speed-dependent responses in V5: A replication study. <i>NeuroImage</i> , 1999 , 9, 508-15	7.9	56

(1995-1999)

24	The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI. <i>NeuroImage</i> , 1999 , 10, 36-44	7.9	81
23	Voxel-by-voxel comparison of automatically segmented cerebral gray matterA rater-independent comparison of structural MRI in patients with epilepsy. <i>NeuroImage</i> , 1999 , 10, 373-84	7.9	167
22	High-dimensional image registration using symmetric priors. <i>Neurolmage</i> , 1999 , 9, 619-28	7.9	125
21	The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. <i>NeuroReport</i> , 1999 , 10, 1647-51	1.7	388
20	Nonlinear spatial normalization using basis functions 1999 , 7, 254		2
19	Nonlinear spatial normalization using basis functions 1999 , 7, 254		1
18	Nonlinear spatial normalization using basis functions 1999 , 7, 254		16
17	Identifying global anatomical differences: deformation-based morphometry. <i>Human Brain Mapping</i> , 1998 , 6, 348-57	5.9	282
16	Neural basis of an inherited speech and language disorder. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 12695-700	11.5	338
15	Absolute PET Quantification with Correction for Partial Volume Effects within Cerebral Structures 1 1Transcripts of the BRAINPET97 discussion of this chapter can be found in Section VIII. 1998 , 59-66		20
14	Cortical grey matter and benzodiazepine receptors in malformations of cortical development. A voxel-based comparison of structural and functional imaging data. <i>Brain</i> , 1997 , 120 (Pt 11), 1961-73	11.2	81
13	MRI and PET coregistrationa cross validation of statistical parametric mapping and automated image registration. <i>NeuroImage</i> , 1997 , 5, 271-9	7.9	100
12	Incorporating prior knowledge into image registration. <i>NeuroImage</i> , 1997 , 6, 344-52	7.9	375
11	Multimodal image coregistration and partitioninga unified framework. <i>NeuroImage</i> , 1997 , 6, 209-17	7.9	796
10	Analysis of fMRI data using the general linear statistical model. NeuroImage, 1996, 3, S102	7.9	2
9	Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging. <i>Alzheimer Disease and Associated Disorders</i> , 1996 , 10, 141-70	2.5	67
8	Linear dimension reduction of sequences of medical images: II. Direct sum decomposition. <i>Physics in Medicine and Biology</i> , 1995 , 40, 1921-41	3.8	14
7	Spatial registration and normalization of images. <i>Human Brain Mapping</i> , 1995 , 3, 165-189	5.9	2567

6	Quantitation of [11C]diprenorphine cerebral kinetics in man acquired by PET using presaturation, pulse-chase and tracer-only protocols. <i>Journal of Neuroscience Methods</i> , 1994 , 51, 123-34	3	43
5	Imaging transient, randomly occurring neuropsychological events in single subjects with positron emission tomography: an event-related count rate correlational analysis. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 1994 , 14, 771-82	7.3	36
4	Dynamic monitoring of [11C]diprenorphine in rat brain using a prototype positron imaging device. <i>Journal of Neuroscience Methods</i> , 1991 , 40, 223-32	3	13
3	In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. <i>Neuroscience Letters</i> , 1991 , 126, 25-8	3.3	144
2			
	Spatial Registration of Images501-531		2