Bartholomeus Van der Holst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/124670/publications.pdf

Version: 2024-02-01

70 papers 3,814 citations

34 h-index 61 g-index

76 all docs

76 docs citations

76 times ranked 2920 citing authors

#	Article	IF	CITATIONS
1	AWSoM Magnetohydrodynamic Simulation of a Solar Active Region with Realistic Spectral Synthesis. Astrophysical Journal, 2022, 928, 34.	4.5	6
2	What sustained multi-disciplinary research can achieve: The space weather modeling framework. Journal of Space Weather and Space Climate, 2021, 11, 42.	3.3	32
3	Threaded-field-line Model for the Low Solar Corona Powered by the Alfvén Wave Turbulence. Astrophysical Journal, 2021, 908, 172.	4.5	17
4	One Year in the Life of Young Suns: Data-constrained Corona-wind Model of \hat{I}^2 ¹ Ceti. Astrophysical Journal, 2021, 916, 96.	4.5	15
5	Simulating Solar Maximum Conditions Using the Alfvén Wave Solar Atmosphere Model (AWSoM). Astrophysical Journal, 2021, 923, 176.	4.5	15
6	Thermodynamic Structure of the Solar Corona: Tomographic Reconstructions and MHD Modeling. Solar Physics, 2020, 295, 1.	2.5	9
7	SPECTRUM: Synthetic Spectral Calculations for Global Space Plasma Modeling. Astrophysical Journal, Supplement Series, 2019, 242, 1.	7.7	14
8	Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe. Solar Physics, 2019, 294, 1.	2.5	5
9	A six-moment multi-fluid plasma model. Journal of Computational Physics, 2019, 387, 134-153.	3.8	11
10	Predictions for the First Parker Solar Probe Encounter. Astrophysical Journal Letters, 2019, 872, L18.	8.3	26
11	Validation of the Alfvén Wave Solar Atmosphere Model (AWSoM) with Observations from the Low Corona to 1 au. Astrophysical Journal, 2019, 887, 83.	4.5	41
12	Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 260-265.	7.1	159
13	Extended MHD modeling of the steady solar corona and the solar wind. Living Reviews in Solar Physics, 2018, 15, 4.	22.0	72
14	Realâ€Time SWMF at CCMC: Assessing the Dst Output From Continuous Operational Simulations. Space Weather, 2018, 16, 1583-1603.	3.7	32
15	Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study. Astrophysical Journal, 2018, 858, 22.	4.5	3
16	CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL. Astrophysical Journal, 2017, 834, 123.	4.5	11
17	CHROMOSPHERE TO 1 au SIMULATION OF THE 2011 MARCH 7th EVENT: A COMPREHENSIVE STUDY OF CORONAL MASS EJECTION PROPAGATION. Astrophysical Journal, 2017, 834, 172.	4.5	68
18	DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL. Astrophysical Journal, 2017, 834, 173.	4.5	83

2

#	Article	IF	CITATIONS
19	Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening. Astrophysical Journal, 2017, 845, 98.	4.5	27
20	The Interaction of Coronal Mass Ejections with Alfvénic Turbulence. Journal of Physics: Conference Series, 2017, 900, 012015.	0.4	6
21	Global MHD simulations of Mercury's magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 2015, 120, 4763-4775.	2.4	89
22	Selfâ€consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 3503-3524.	2.4	44
23	A STEADY-STATE PICTURE OF SOLAR WIND ACCELERATION AND CHARGE STATE COMPOSITION DERIVED FROM A GLOBAL WAVE-DRIVEN MHD MODEL. Astrophysical Journal, 2015, 806, 55.	4.5	42
24	Medium-Range Thermosphere-lonosphere Storm Forecasts. Space Weather, 2015, 13, 125-129.	3.7	18
25	Alfvén wave solar model (AWSoM): proton temperature anisotropy and solar wind acceleration. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3697-3709.	4.4	35
26	COMET 1P/HALLEY MULTIFLUID MHD MODEL FOR THE <i>GIOTTO</i> FLY-BY. Astrophysical Journal, 2014, 781, 86.	4.5	29
27	CHARGE STATE EVOLUTION IN THE SOLAR WIND. III. MODEL COMPARISON WITH OBSERVATIONS. Astrophysical Journal, 2014, 790, 111.	4.5	27
28	ALFVÉN WAVE SOLAR MODEL (AWSoM): CORONAL HEATING. Astrophysical Journal, 2014, 782, 81.	4.5	356
29	Modeling solar wind massâ€loading in the vicinity of the Sun using 3â€D MHD simulations. Journal of Geophysical Research: Space Physics, 2014, 119, 18-25.	2.4	6
30	Simulating radiative shocks with the CRASH laser package. High Energy Density Physics, 2013, 9, 8-16.	1.5	13
31	A GLOBAL WAVE-DRIVEN MAGNETOHYDRODYNAMIC SOLAR MODEL WITH A UNIFIED TREATMENT OF OPEN AND CLOSED MAGNETIC FIELD TOPOLOGIES. Astrophysical Journal, 2013, 778, 176.	4.5	85
32	NUMERICAL SIMULATIONS OF CORONAL MASS EJECTION ON 2011 MARCH 7: ONE-TEMPERATURE AND TWO-TEMPERATURE MODEL COMPARISON. Astrophysical Journal, 2013, 773, 50.	4.5	45
33	GLOBAL NUMERICAL MODELING OF ENERGETIC PROTON ACCELERATION IN A CORONAL MASS EJECTION TRAVELING THROUGH THE SOLAR CORONA. Astrophysical Journal, 2013, 778, 43.	4.5	48
34	MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS. Astrophysical Journal, 2013, 764, 23.	4.5	142
35	THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS. Astrophysical Journal, 2012, 756, 81.	4.5	37
36	DYNAMIC COUPLING OF CONVECTIVE FLOWS AND MAGNETIC FIELD DURING FLUX EMERGENCE. Astrophysical Journal, 2012, 745, 37.	4.5	35

#	Article	IF	Citations
37	BUILDUP OF MAGNETIC SHEAR AND FREE ENERGY DURING FLUX EMERGENCE AND CANCELLATION. Astrophysical Journal, 2012, 754, 15.	4.5	34
38	CORONAL HEATING BY SURFACE ALFVÉN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND. Astrophysical Journal, 2012, 756, 155.	4.5	37
39	Simulating radiative shocks in nozzle shock tubes. High Energy Density Physics, 2012, 8, 161-169.	1.5	13
40	UNDERSTANDING <i>SDO</i> /I>/AIA OBSERVATIONS OF THE 2010 JUNE 13 EUV WAVE EVENT: DIRECT INSIGHT FROM A GLOBAL THERMODYNAMIC MHD SIMULATION. Astrophysical Journal, 2012, 750, 134.	4.5	90
41	Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. Journal of Computational Physics, 2012, 231, 718-744.	3.8	222
42	Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 2012, 231, 870-903.	3.8	560
43	OBTAINING POTENTIAL FIELD SOLUTIONS WITH SPHERICAL HARMONICS AND FINITE DIFFERENCES. Astrophysical Journal, 2011, 732, 102.	4.5	86
44	CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICSâ€"IMPLEMENTATION AND VERIFICATION. Astrophysical Journal, Supplement Series, 2011, 194, 23.	7.7	91
45	STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2011, 728, 2.	4.5	87
46	Radiative effects in radiative shocks in shock tubes. High Energy Density Physics, 2011, 7, 130-140.	1.5	38
47	Predictive modeling of a radiative shock system. Reliability Engineering and System Safety, 2011, 96, 1184-1193.	8.9	16
48	A physics informed emulator for laser-driven radiating shock simulations. Reliability Engineering and System Safety, 2011, 96, 1194-1207.	8.9	14
49	TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA. Astrophysical Journal, 2010, 712, 1219-1231.	4.5	79
50	A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVÉN WAVES. Astrophysical Journal, 2010, 725, 1373-1383.	4.5	123
51	SIMULATION OF FLUX EMERGENCE FROM THE CONVECTION ZONE TO THE CORONA. Astrophysical Journal, 2010, 714, 1649-1657.	4.5	51
52	BREAKOUT CORONAL MASS EJECTION OR STREAMER BLOWOUT: THE BUGLE EFFECT. Astrophysical Journal, 2009, 693, 1178-1187.	4.5	39
53	An exact Riemann-solver-based solution for regular shock refraction. Journal of Fluid Mechanics, 2009, 627, 33-53.	3.4	9
54	Numerical simulations of the solar corona and Coronal Mass Ejections. Earth, Planets and Space, 2009, 61, 599-602.	2.5	2

#	Article	IF	Citations
55	Jet Stability: A Computational Survey. Lecture Notes in Physics, 2009, , 179-199.	0.7	5
56	A multidimensional grid-adaptive relativistic magnetofluid code. Computer Physics Communications, 2008, 179, 617-627.	7.5	48
57	Simulation of a Breakout Coronal Mass Ejection in the Solar Wind. Astrophysical Journal, 2007, 671, L77-L80.	4.5	48
58	PHOENIX: MHD spectral code for rotating laboratory and gravitating astrophysical plasmas. Journal of Computational Physics, 2007, 226, 509-533.	3.8	25
59	Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications. Journal of Computational Physics, 2007, 226, 925-946.	3.8	78
60	Initiation of cmes by magnetic flux emergence. Journal of Astrophysics and Astronomy, 2006, 27, 159-166.	1.0	7
61	Modelling of Solar Wind, CME Initiation and CME Propagation. Space Science Reviews, 2005, 121, 91-104.	8.1	16
62	Unstable continuous spectra of transonic axisymmetric plasmas. Physics of Plasmas, 2004, 11, 28-54.	1.9	45
63	No additional flow continua in magnetohydrodynamics. Physics of Plasmas, 2004, 11, 4332-4340.	1.9	18
64	FINESSE: Axisymmetric MHD Equilibria with Flow. Journal of Computational Physics, 2002, 182, 91-117.	3.8	78
65	New numerical tools to study waves and instabilities of flowing plasmas. Computer Physics Communications, 2002, 147, 497-500.	7.5	1
66	New Alfvén Continuum Gaps and Global Modes Induced by Toroidal Flow. Physical Review Letters, 2000, 84, 2865-2868.	7.8	45
67	Low frequency Alfveln waves induced by toroidal flows. Physics of Plasmas, 2000, 7, 4208.	1.9	60
68	Calculation of resistive magnetohydrodynamic spectra in tokamaks. Physics of Plasmas, 1999, 6, 1554-1561.	1.9	16
69	Magnetohydrodynamic spectrum of gravitating plane plasmas with flow. Journal of Plasma Physics, 1999, 61, 221-240.	2.1	13
70	Calculating magnetohydrodynamic flow spectra. Computer Physics Communications, 1997, 106, 39-52.	7.5	17