
Javier Garcia-Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1246679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer stem cells and clonal evolution in bone sarcomas. , 2022, , 371-391.		0
2	Cellular Heterogeneity and Cooperativity in Glioma Persister Cells Under Temozolomide Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	0
3	Safety and Efficacy of an Oncolytic Adenovirus as an Immunotherapy for Canine Cancer Patients. Veterinary Sciences, 2022, 9, 327.	1.7	5
4	AKT and JUN are differentially activated in mesenchymal stem cells after infection with human and canine oncolytic adenoviruses. Cancer Gene Therapy, 2021, 28, 64-73.	4.6	4
5	The Netrin-1-Neogenin-1 signaling axis controls neuroblastoma cell migration via integrin-l ² 1 and focal adhesion kinase activation. Cell Adhesion and Migration, 2021, 15, 58-73.	2.7	10
6	Humoral responses to SARS-CoV-2 by healthy and sick dogs during the COVID-19 pandemic in Spain. Veterinary Research, 2021, 52, 22.	3.0	16
7	Combination immunotherapy using G-CSF and oncolytic virotherapy reduces tumor growth in osteosarcoma. , 2021, 9, e001703.		16
8	RGB-Marking to Identify Patterns of Selection and Neutral Evolution in Human Osteosarcoma Models. Cancers, 2021, 13, 2003.	3.7	3
9	Systemic Treatment of Immune-Mediated Keratoconjunctivitis Sicca with Allogeneic Stem Cells Improves the Schirmer Tear Test Score in a Canine Spontaneous Model of Disease. Journal of Clinical Medicine, 2021, 10, 5981.	2.4	6
10	Sarcoma treatment in the era of molecular medicine. EMBO Molecular Medicine, 2020, 12, e11131.	6.9	154
11	Biodistribution Analysis of Oncolytic Adenoviruses in Canine Patient Necropsy Samples Treated with Cellular Virotherapy. Molecular Therapy - Oncolytics, 2020, 18, 525-534.	4.4	2
12	Cellular Virotherapy Increases Tumor-Infiltrating Lymphocytes (TIL) and Decreases their PD-1+ Subsets in Mouse Immunocompetent Models. Cancers, 2020, 12, 1920.	3.7	14
13	First-in-Human, First-in-Child Trial of Autologous MSCs Carrying the Oncolytic Virus Icovir-5 in Patients with Advanced Tumors. Molecular Therapy, 2020, 28, 1033-1042.	8.2	57
14	SOX2 Expression and Transcriptional Activity Identifies a Subpopulation of Cancer Stem Cells in Sarcoma with Prognostic Implications. Cancers, 2020, 12, 964.	3.7	21
15	The Netrin-4/Laminin γ1/Neogenin-1 complex mediates migration in SK-N-SH neuroblastoma cells. Cell Adhesion and Migration, 2019, 13, 33-40.	2.7	8
16	Enhanced Antitumor Efficacy of Oncolytic Adenovirus–loaded Menstrual Blood–derived Mesenchymal Stem Cells in Combination with Peripheral Blood Mononuclear Cells. Molecular Cancer Therapeutics, 2019, 18, 127-138.	4.1	35
17	Clonal dynamics in osteosarcoma defined by RGB marking. Nature Communications, 2018, 9, 3994.	12.8	40
18	c-Fos induces chondrogenic tumor formation in immortalized human mesenchymal progenitor cells. Scientific Reports, 2018, 8, 15615.	3.3	12

#	Article	IF	CITATIONS
19	Antitumor virotherapy using syngeneic or allogeneic mesenchymal stem cell carriers induces systemic immune response and intratumoral leukocyte infiltration in mice. Cancer Immunology, Immunotherapy, 2018, 67, 1589-1602.	4.2	21
20	Allogeneic Adipose-Derived Mesenchymal Stem Cells (Horse Allo 20) for the Treatment of Osteoarthritis-Associated Lameness in Horses: Characterization, Safety, and Efficacy of Intra-Articular Treatment. Stem Cells and Development, 2018, 27, 1147-1160.	2.1	27
21	Remission of Spontaneous Canine Tumors after Systemic Cellular Viroimmunotherapy. Cancer Research, 2018, 78, 4891-4901.	0.9	33
22	Role of Activator Protein-1 Complex on the Phenotype of Human Osteosarcomas Generated from Mesenchymal Stem Cells. Stem Cells, 2018, 36, 1487-1500.	3.2	11
23	First-in-child trial of celyvir (autologous mesenchymal stem cells carrying the oncolytic virus) Tj ETQq1 1 0.78431 Oncology, 2018, 36, 10543-10543.	4 rgBT /Ov 1.6	verlock 10 Tf 12
24	Engineered LINE-1 retrotransposition in nondividing human neurons. Genome Research, 2017, 27, 335-348.	5.5	128
25	Prospects of Pluripotent and Adult Stem Cells for Rare Diseases. Advances in Experimental Medicine and Biology, 2017, 1031, 371-386.	1.6	2
26	Hedgehog Pathway Inhibition Hampers Sphere and Holoclone Formation in Rhabdomyosarcoma. Stem Cells International, 2017, 2017, 1-14.	2.5	10
27	Human Menstrual Blood-Derived Mesenchymal Stem Cells as Potential Cell Carriers for Oncolytic Adenovirus. Stem Cells International, 2017, 2017, 1-10.	2.5	24
28	Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget, 2017, 8, 45415-45431.	1.8	47
29	Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells International, 2016, 2016, 1-13.	2.5	164
30	Age-associated hydroxymethylation in human bone-marrow mesenchymal stem cells. Journal of Translational Medicine, 2016, 14, 207.	4.4	33
31	Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations. Scientific Reports, 2016, 6, 27878.	3.3	38
32	Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Letters, 2016, 371, 161-170.	7.2	61
33	Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the-art technology. Oncolytic Virotherapy, 2015, 4, 149.	6.0	30
34	Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. Journal of Materials Chemistry B, 2015, 3, 5746-5752.	5.8	73
35	Bone microenvironment signals in osteosarcoma development. Cellular and Molecular Life Sciences, 2015, 72, 3097-3113.	5.4	147
36	Mesenchymal stem cells derived from low risk acute lymphoblastic leukemia patients promote NK cell antitumor activity. Cancer Letters, 2015, 363, 156-165.	7.2	15

JAVIER GARCIA-CASTRO

#	Article	IF	CITATIONS
37	H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Research, 2015, 25, 27-40.	5.5	119
38	Bone Environment is Essential for Osteosarcoma Development from Transformed Mesenchymal Stem Cells, 2014, 32, 1136-1148.	3.2	89
39	Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 730-740.	5.7	50
40	Dopamine Mobilizes Mesenchymal Progenitor Cells Through D2-Class Receptors and Their PI3K/AKT Pathway. Stem Cells, 2014, 32, 2529-2538.	3.2	8
41	Combination of Single-Photon Emission Computed Tomography and Magnetic Resonance Imaging to Track ¹¹¹ In-Oxine–Labeled Human Mesenchymal Stem Cells in Neuroblastoma-Bearing Mice. Molecular Imaging, 2014, 13, 7290.2014.00033.	1.4	15
42	Mesenchymal Stromal Cells Derived from the Bone Marrow of Acute Lymphoblastic Leukemia Patients Show Altered BMP4 Production: Correlations with the Course of Disease. PLoS ONE, 2014, 9, e84496.	2.5	39
43	In Vivo Ectopic Implantation Model to Assess Human Mesenchymal Progenitor Cell Potential. Stem Cell Reviews and Reports, 2013, 9, 833-846.	5.6	10
44	A Role for the CXCR3/CXCL10 Axis in Rasmussen Encephalitis. Pediatric Neurology, 2013, 49, 451-457.e1.	2.1	28
45	Enrichment of neural-related genes in human mesenchymal stem cells from neuroblastoma patients. International Journal of Molecular Medicine, 2012, 30, 365-373.	4.0	3
46	Multipotent Mesenchymal Stromal Cells: Clinical Applications and Cancer Modeling. Advances in Experimental Medicine and Biology, 2012, 741, 187-205.	1.6	32
47	Mesenchymal niches of bone marrow in cancer. Clinical and Translational Oncology, 2011, 13, 611-616.	2.4	14
48	FUS-CHOP Fusion Protein Expression Coupled to p53 Deficiency Induces Liposarcoma in Mouse but Not in Human Adipose-Derived Mesenchymal Stem/Stromal Cells. Stem Cells, 2011, 29, 179-192.	3.2	57
49	Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Therapy, 2010, 17, 476-483.	4.6	126
50	Deficiency in p53 but not Retinoblastoma Induces the Transformation of Mesenchymal Stem Cells <i>In vitro</i> and Initiates Leiomyosarcoma <i>In vivo</i> . Cancer Research, 2010, 70, 4185-4194.	0.9	96
51	Oncolytic virotherapy for neuroblastoma. Discovery Medicine, 2010, 10, 387-93.	0.5	10
52	Mobilisation of mesenchymal cells in cardiac patients: is intense exercise necessary?. British Journal of Sports Medicine, 2009, 43, 221-223.	6.7	8
53	Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-β and IGF-II. Cell Research, 2009, 19, 698-709.	12.0	69
54	Loss of p53 Induces Tumorigenesis in p21-Deficient Mesenchymal Stem Cells. Neoplasia, 2009, 11, 397-IN9.	5.3	89

#	Article	IF	CITATIONS
55	Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. Journal of Experimental Medicine, 2009, 206, 3131-3141.	8.5	109
56	Electron Microscopy Reveals the Presence of Viruses in Mouse Embryonic Fibroblasts But Neither in Human Embryonic Fibroblasts Nor in Human Mesenchymal Cells Used for hESC Maintenance: Toward an Implementation of Microbiological Quality Assurance Program in Stem Cell Banks. Cloning and Stem Cells, 2008, 10, 65-74.	2.6	41
57	Human mesenchymal stem cell transformation is associated with a mesenchymal–epithelial transition. Experimental Cell Research, 2008, 314, 691-698.	2.6	88
58	Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. Journal of Cellular and Molecular Medicine, 2008, 12, 2552-2565.	3.6	129
59	In vivo site-specific recombination using the \hat{l}^2 -rec/sixsystem. BioTechniques, 2008, 45, 69-78.	1.8	7
60	Molecular Characterization of Spontaneous Mesenchymal Stem Cell Transformation. PLoS ONE, 2008, 3, e1398.	2.5	147
61	Cancer Genes Hypermethylated in Human Embryonic Stem Cells. PLoS ONE, 2008, 3, e3294.	2.5	75
62	EARLY-PHASE ADAPTATIONS TO INTRAHOSPITAL TRAINING IN STRENGTH AND FUNCTIONAL MOBILITY OF CHILDREN WITH LEUKEMIA. Journal of Strength and Conditioning Research, 2007, 21, 173-177.	2.1	64
63	Mesenchymal Stem Cells are of Recipient Origin in Pediatric Transplantations Using Umbilical Cord Blood, Peripheral Blood, or Bone Marrow. Journal of Pediatric Hematology/Oncology, 2007, 29, 388-392.	0.6	17
64	Human embryonic stem cells: A potential system for modeling infant leukemia harboring MLL-AF4 fusion gene. Drug Discovery Today: Disease Models, 2007, 4, 53-60.	1.2	11
65	Nucleocytoplasmic shuttling of STK16 (PKL12), a Golgi-resident serine/threonine kinase involved in VEGF expression regulation. Experimental Cell Research, 2006, 312, 135-144.	2.6	21
66	Adipose Tissueâ€Derived Mesenchymal Stem Cells Have In Vivo Immunosuppressive Properties Applicable for the Control of the Graftâ€Versusâ€Host Disease. Stem Cells, 2006, 24, 2582-2591.	3.2	649
67	Inducible model for Â-six-mediated site-specific recombination in mammalian cells. Nucleic Acids Research, 2006, 34, e1-e1.	14.5	9
68	Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury. British Journal of Sports Medicine, 2006, 40, 719-722.	6.7	53
69	Physical activity during treatment in children with leukemia: a pilot study. Applied Physiology, Nutrition and Metabolism, 2006, 31, 407-413.	1.9	67
70	Tumor cells as cellular vehicles to deliver gene therapies to metastatic tumors. Cancer Gene Therapy, 2005, 12, 341-349.	4.6	46
71	Intrahospital supervised exercise training: a complementary tool in the therapeutic armamentarium against childhood leukemia. Leukemia, 2005, 19, 1334-1337.	7.2	26
72	Spontaneous Human Adult Stem Cell Transformation. Cancer Research, 2005, 65, 3035-3039.	0.9	997

JAVIER GARCIA-CASTRO

#	Article	IF	CITATIONS
73	In Vitro and In Vivo Immunomodulatory Effects of Mesenchymal Stem Cells from Adipose Tissue Blood, 2005, 106, 3098-3098.	1.4	3
74	Absence of hematopoiesis from transplanted olfactory bulb neural stem cells. European Journal of Neuroscience, 2004, 19, 505-512.	2.6	40
75	Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Experimental Cell Research, 2004, 297, 313-328.	2.6	75
76	Purging of leukemia-contaminated bone marrow grafts using suicide adenoviral vectors: an in vivo murine experimental model. Gene Therapy, 2003, 10, 1328-1335.	4.5	7
77	Efficient and nontoxic adenoviral purging method for autologous transplantation in breast cancer patients. Cancer Research, 2002, 62, 5013-8.	0.9	12
78	Selective Transduction of Murine Myelomonocytic Leukemia Cells (WEHI-3B) with Regular and RGD-Adenoviral Vectors. Molecular Therapy, 2001, 3, 70-77.	8.2	22
79	Transplantation of syngenic bone marrow contaminated with NGFr-marked WEHI-3B cells: an improved model of leukemia relapse in mice. Leukemia, 2000, 14, 457-465.	7.2	6
80	SOX2 Expression and Transcriptional Activity Identifies a Subpopulation of Cancer Stem Cells in Sarcoma with Prognostic Implications. SSRN Electronic Journal, 0, , .	0.4	3