Gregory L Szeto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1246663/publications.pdf

Version: 2024-02-01

430442 476904 3,414 32 18 29 citations g-index h-index papers 48 48 48 6855 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Correction for Rando et al., "Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure― MSystems, 2022, , e0144721.	1.7	2
2	Subcellular regulation of glucose metabolism through multienzyme glucosome assemblies by EGF–ERK1/2 signaling pathways. Journal of Biological Chemistry, 2022, 298, 101675.	1.6	7
3	Leveraging Heterogeneity in Systemic Lupus Erythematosus for New Therapies. Trends in Molecular Medicine, 2021, 27, 152-171.	3.5	34
4	Targeted Delivery of Chloroquine to Antigen-Presenting Cells Enhances Inhibition of the Type I Interferon Response. ACS Biomaterials Science and Engineering, 2021, 7, 5666-5677.	2.6	4
5	A Cell-Free Protein Expression System Derived from Human Primary Peripheral Blood Mononuclear Cells. ACS Synthetic Biology, 2020, 9, 2188-2196.	1.9	2
6	Impact of Four Common Hydrogels on Amyloid-β (Aβ) Aggregation and Cytotoxicity: Implications for 3D Models of Alzheimer's Disease. ACS Omega, 2020, 5, 20250-20260.	1.6	12
7	Collagen hydrogel confinement of Amyloid- \hat{l}^2 (A \hat{l}^2) accelerates aggregation and reduces cytotoxic effects. Acta Biomaterialia, 2020, 112, 164-173.	4.1	11
8	Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. Journal of Neuroscience, 2020, 40, 2960-2974.	1.7	193
9	Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biology, 2020, 18, e3000591.	2.6	58
10	Lipid-Mediated Insertion of Toll-Like Receptor (TLR) Ligands for Facile Immune Cell Engineering. Frontiers in Immunology, 2020, 11, 560.	2.2	4
11	Integrative Approaches to Cancer Immunotherapy. Trends in Cancer, 2019, 5, 400-410.	3.8	64
12	Abstract A52: Eradication of large established tumors with combination immunotherapy engaging innate and adaptive immunity. , 2017, , .		0
13	Immuno Explorer: A Web-Based Multivariate Visualization System for Exploratory Analysis of Immunotherapy. , $2016, , .$		О
14	Temporally Programmed CD8 \hat{l}_{\pm} + DC Activation Enhances Combination Cancer Immunotherapy. Cell Reports, 2016, 17, 2503-2511.	2.9	37
15	Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nature Medicine, 2016, 22, 1402-1410.	15.2	437
16	Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications, 2016, 7, 12846.	5.8	204
17	Materials design at the interface of nanoparticles and innate immunity. Journal of Materials Chemistry B, 2016, 4, 1610-1618.	2.9	69
18	A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nature Communications, 2016, 7, 10220.	5.8	137

#	Article	IF	Citations
19	Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Scientific Reports, 2015, 5, 10276.	1.6	88
20	Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine, 2015, 33, 861-868.	1.7	76
21	Stochastic Particle Barcoding for Single-Cell Tracking and Multiparametric Analysis. Small, 2015, 11, 489-498.	5.2	9
22	Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants. Journal of Clinical Investigation, 2015, 125, 2532-2546.	3.9	306
23	CD4 ⁺ T cell–dependent and CD4 ⁺ T cell–independent cytokine-chemokine network changes in the immune responses of HIV-infected individuals. Science Signaling, 2015, 8, ra104.	1.6	20
24	Histone Deacetylase Inhibitors Impair the Elimination of HIV-Infected Cells by Cytotoxic T-Lymphocytes. PLoS Pathogens, 2014, 10, e1004287.	2.1	179
25	Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 2014, 507, 519-522.	13.7	760
26	Attenuation of Pathogenic Immune Responses during Infection with Human and Simian Immunodeficiency Virus (HIV/SIV) by the Tetracycline Derivative Minocycline. PLoS ONE, 2014, 9, e94375.	1.1	11
27	Engineering synthetic vaccines using cues from natural immunity. Nature Materials, 2013, 12, 978-990.	13.3	500
28	Koch Institute Symposium on Cancer Immunology and Immunotherapy. Cancer Immunology Research, 2013, 1, 217-222.	1.6	1
29	Cellular Barcodes for Efficiently Profiling Single-Cell Secretory Responses by Microengraving. Analytical Chemistry, 2012, 84, 10531-10536.	3.2	44
30	Minocycline Suppresses Activation of Nuclear Factor of Activated T Cells 1 (NFAT1) in Human CD4+ T Cells. Journal of Biological Chemistry, 2011, 286, 11275-11282.	1.6	39
31	Minocycline Attenuates HIV Infection and Reactivation by Suppressing Cellular Activation in Human CD4 ⁺ T Cells. Journal of Infectious Diseases, 2010, 201, 1132-1140.	1.9	58
32	<title>Battlefield decision aid for acoustical ground sensors with interface to meteorological data sources</title> ., 2001,,.		2