Yuanxing Fang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1246354/yuanxing-fang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 2,539 25 50 g-index

63 3,346 10 5.99 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
60	Tri-s-triazine-Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1700008	24	407
59	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3992-3996	16.4	293
58	Photocatalytic Oxygen Evolution from Functional Triazine-Based Polymers with Tunable Band Structures. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 470-474	16.4	191
57	Biomimetic Donor-Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8729-8733	16.4	130
56	Photocatalytic CO conversion by polymeric carbon nitrides. <i>Chemical Communications</i> , 2018 , 54, 5674-5	68.8	126
55	Metal®rganic frameworks for solar energy conversion by photoredox catalysis. <i>Coordination Chemistry Reviews</i> , 2018 , 373, 83-115	23.2	113
54	Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9749-9753	16.4	87
53	Metal-Free Boron-Containing Heterogeneous Catalysts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15506-15518	16.4	86
52	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 4050-4054	3.6	77
51	Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization. <i>Chemical Communications</i> , 2018 , 54, 2475-2478	5.8	77
50	Photocatalysis: an overview of recent developments and technological advancements. <i>Science China Chemistry</i> , 2020 , 63, 149-181	7.9	63
49	A Borocarbonitride Ceramic Aerogel for Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6033-6037	16.4	55
48	Photocatalytic Oxygen Evolution from Functional Triazine-Based Polymers with Tunable Band Structures. <i>Angewandte Chemie</i> , 2018 , 130, 479-483	3.6	54
47	Synthesis of Polymeric Carbon Nitride Films with Adhesive Interfaces for Solar Water Splitting Devices. <i>ACS Catalysis</i> , 2018 , 8, 8774-8780	13.1	53
46	Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. <i>Nano Energy</i> , 2015 , 16, 301-309	17.1	41
45	Nitrogen-Doped Carbon Dots/TiO2 Nanoparticle Composites for Photoelectrochemical Water Oxidation. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3371-3381	5.6	34
44	Diverse Polymeric Carbon Nitride-Based Semiconductors for Photocatalysis and Variations 2020 , 2, 975	5-980	33

(2020-2019)

43	Phosphorylation of Polymeric Carbon Nitride Photoanodes with Increased Surface Valence Electrons for Solar Water Splitting. <i>ChemSusChem</i> , 2019 , 12, 2605-2608	8.3	31
42	Gradient sulfur doping along polymeric carbon nitride films as visible light photoanodes for the enhanced water oxidation. <i>Applied Catalysis B: Environmental</i> , 2020 , 268, 118398	21.8	30
41	The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production. <i>Research on Chemical Intermediates</i> , 2017 , 43, 5137-5152	2.8	28
40	Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2015 , 202, 39-45	3.1	27
39	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination <i>Chemical Reviews</i> , 2022 ,	68.1	27
38	An enhanced gas ionization sensor from Y-doped vertically aligned conductive ZnO nanorods. <i>Sensors and Actuators B: Chemical</i> , 2016 , 237, 724-732	8.5	26
37	Porous carbon nanosheets from biological nucleobase precursor as efficient pH-independent oxygen reduction electrocatalyst. <i>Carbon</i> , 2020 , 156, 179-186	10.4	26
36	Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14690-14696	13	25
35	Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18695-18700	16.4	24
34	Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers. <i>Brain Research</i> , 2014 , 1565, 18-27	3.7	24
33	Marangoni ring-templated vertically aligned ZnO nanotube arrays with enhanced photocatalytic hydrogen production. <i>Materials Chemistry and Physics</i> , 2015 , 149-150, 12-16	4.4	22
32	Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. <i>Chemical Communications</i> , 2019 , 55, 7756-7759	5.8	19
31	Efficient development of Type-II TiO2 heterojunction using electrochemical approach for an enhanced photoelectrochemical water splitting performance. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 438	3-443	19
30	Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. <i>Angewandte Chemie</i> , 2018 , 130, 9897-9901	3.6	19
29	Biomimetic Donor Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. <i>Angewandte Chemie</i> , 2018 , 130, 8865-8869	3.6	18
28	Metallfreie Bor-haltige Heterogenkatalysatoren. <i>Angewandte Chemie</i> , 2017 , 129, 15712-15724	3.6	17
27	Nanoscale boron carbonitride semiconductors for photoredox catalysis. <i>Nanoscale</i> , 2020 , 12, 3593-3604	17.7	16
26	Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13059-13064	13	15

25	In Situ Synthesis of Phosphorus-Doped Polymeric Carbon Nitride Sheets for Photoelectrochemical Water Oxidation. <i>Solar Rrl</i> , 2020 , 4, 2000168	7.1	14
24	Encapsulation of Cobalt Oxide into Metal-Organic Frameworks for an Improved Photocatalytic CO Reduction. <i>ChemSusChem</i> , 2021 , 14, 946-951	8.3	14
23	LiCl as Phase-Transfer Catalysts to Synthesize Thin Co P Nanosheets for Oxygen Evolution Reaction. <i>ChemSusChem</i> , 2019 , 12, 1911-1915	8.3	13
22	cPCN-Regulated SnO Composites Enables Perovskite Solar Cell with Efficiency Beyond 23. <i>Nano-Micro Letters</i> , 2021 , 13, 101	19.5	13
21	Edeficient pyridine ring-incorporated carbon nitride polymers for photocatalytic H2 evolution and CO2 fixation. <i>Research on Chemical Intermediates</i> , 2021 , 47, 15-27	2.8	13
20	Well-defined CoS cages enable the separation of photoexcited charges to promote visible-light CO reduction. <i>Nanoscale</i> , 2021 , 13, 18070-18076	7.7	13
19	Transparent conductive oxides in photoanodes for solar water oxidation. <i>Nanoscale Advances</i> , 2020 , 2, 626-632	5.1	12
18	Photoelectrochemical conversion of CO2 into HCOOH using a polymeric carbon nitride photoanode and Cu cathode. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5812-5817	5.8	12
17	Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity. <i>Journal of Energy Chemistry</i> , 2021 , 62, 415-422	12	12
16	Synergetic effects by Co2+ and PO43- on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution. <i>Chemical Engineering Science</i> , 2022 , 251, 117435	4.4	11
15	Ultra rapid direct heating synthesis of ZnO nanorods with improved light trapping from stacked photoanodes for high efficiency photocatalytic water splitting. <i>Nanotechnology</i> , 2017 , 28, 355402	3.4	8
14	Fluorescent Se-modified carbon nitride nanosheets as biomimetic catalases for free-radical scavenging. <i>Chemical Communications</i> , 2020 , 56, 916-919	5.8	8
13	Coating Polymeric Carbon Nitride on Conductive Carbon Cloth to Promote Charge Separation for Photocatalytic Water Splitting. <i>ChemSusChem</i> , 2021 , 14, 3821-3824	8.3	8
12	Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light. <i>Applied Catalysis B: Environmental</i> , 2021 , 296, 120369	21.8	8
11	Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. <i>Angewandte Chemie</i> , 2020 , 132, 18854-18859	3.6	6
10	Multimetallic Oxynitrides Nanoparticles for a New Generation of Photocatalysts. <i>Chemistry - A European Journal</i> , 2019 , 25, 16676	4.8	6
9	Signal Enhancement with Stacked Magnets for High-Resolution Radio Frequency Glow Discharge Mass Spectrometry. <i>Analytical Chemistry</i> , 2017 , 89, 1382-1388	7.8	5
8	Roles of Metal-Free Materials in Photoelectrodes for Water Splitting. <i>Accounts of Materials Research</i> ,	7.5	5

LIST OF PUBLICATIONS

7	Role of carbon quantum dots on Nickel titanate to promote water oxidation reaction under visible light illumination. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 203-209	9.3	4
6	One-Pot Synthesis of CoS2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting <i>ChemSusChem</i> , 2022 ,	8.3	4
5	A Borocarbonitride Ceramic Aerogel for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2019 , 131, 6094-60	9§ 6	3
4	Supramolecular organization of melem for the synthesis of photoactive porous carbon nitride rods. <i>Nanoscale</i> , 2021 , 13, 19511-19517	7.7	3
3	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. <i>Advanced Science</i> , 2021 , 8, e2102376	13.6	3
2	The role of carbon dots - derived underlayer in hematite photoanodes. <i>Nanoscale</i> , 2020 , 12, 20220-2022	29 .7	2
1	Artificial Photosynthesis by MOFs: Water Splitting and CO2 Conversion. <i>Series on Chemistry, Energy and the Environment</i> , 2020 , 427-452	0.2	