
Yuanxing Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1246354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triâ€ <i>s</i> â€ŧriazineâ€Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution. Advanced Materials, 2017, 29, 1700008.	21.0	541
2	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3992-3996.	13.8	374
3	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie - International Edition, 2018, 57, 470-474.	13.8	278
4	Biomimetic Donor–Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. Angewandte Chemie - International Edition, 2018, 57, 8729-8733.	13.8	190
5	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	47.7	180
6	Photocatalytic CO ₂ conversion by polymeric carbon nitrides. Chemical Communications, 2018, 54, 5674-5687.	4.1	158
7	Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373, 83-115.	18.8	146
8	Metalâ€Free Boronâ€Containing Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2017, 56, 15506-15518.	13.8	114
9	Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 9749-9753.	13.8	114
10	Photocatalysis: an overview of recent developments and technological advancements. Science China Chemistry, 2020, 63, 149-181.	8.2	107
11	Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization. Chemical Communications, 2018, 54, 2475-2478.	4.1	104
12	A Borocarbonitride Ceramic Aerogel for Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 6033-6037.	13.8	101
13	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie, 2017, 129, 4050-4054.	2.0	87
14	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie, 2018, 130, 479-483.	2.0	75
15	Synthesis of Polymeric Carbon Nitride Films with Adhesive Interfaces for Solar Water Splitting Devices. ACS Catalysis, 2018, 8, 8774-8780.	11.2	72
16	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	5.0	71
17	Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 14690-14696.	10.3	62
18	Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity. Journal of Energy Chemistry, 2021, 62, 415-422.	12.9	60

YUANXING FANG

#	Article	IF	CITATIONS
19	Water Oxidation with Cobalt‣oaded Linear Conjugated Polymer Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 18695-18700.	13.8	55
20	Diverse Polymeric Carbon Nitride-Based Semiconductors for Photocatalysis and Variations. , 2020, 2, 975-980.		54
21	Gradient sulfur doping along polymeric carbon nitride films as visible light photoanodes for the enhanced water oxidation. Applied Catalysis B: Environmental, 2020, 268, 118398.	20.2	53
22	Encapsulation of Cobalt Oxide into Metalâ€Organic Frameworks for an Improved Photocatalytic CO ₂ Reduction. ChemSusChem, 2021, 14, 946-951.	6.8	47
23	Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy, 2015, 16, 301-309.	16.0	45
24	Porous carbon nanosheets from biological nucleobase precursor as efficient pH-independent oxygen reduction electrocatalyst. Carbon, 2020, 156, 179-186.	10.3	45
25	Well-defined Co ₉ S ₈ cages enable the separation of photoexcited charges to promote visible-light CO ₂ reduction. Nanoscale, 2021, 13, 18070-18076.	5.6	43
26	Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 202, 39-45.	3.5	39
27	The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production. Research on Chemical Intermediates, 2017, 43, 5137-5152.	2.7	38
28	Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light. Applied Catalysis B: Environmental, 2021, 296, 120369.	20.2	38
29	Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production. Environmental Science: Nano, 2022, 9, 2464-2469.	4.3	38
30	Phosphorylation of Polymeric Carbon Nitride Photoanodes with Increased Surface Valence Electrons for Solar Water Splitting. ChemSusChem, 2019, 12, 2605-2608.	6.8	35
31	Synergetic effects by Co2+ and PO43- on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution. Chemical Engineering Science, 2022, 251, 117435.	3.8	34
32	An enhanced gas ionization sensor from Y-doped vertically aligned conductive ZnO nanorods. Sensors and Actuators B: Chemical, 2016, 237, 724-732.	7.8	32
33	Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2020, 8, 13059-13064.	10.3	31
34	Ï€-deficient pyridine ring-incorporated carbon nitride polymers for photocatalytic H2 evolution and CO2 fixation. Research on Chemical Intermediates, 2021, 47, 15-27.	2.7	31
35	cPCN-Regulated SnO2 Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%. Nano-Micro Letters, 2021, 13, 101.	27.0	31
36	Efficient development of Type-II TiO2 heterojunction using electrochemical approach for an enhanced photoelectrochemical water splitting performance. Chinese Journal of Catalysis, 2018, 39, 438-445.	14.0	30

YUANXING FANG

#	Article	IF	CITATIONS
37	Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. Chemical Communications, 2019, 55, 7756-7759.	4.1	29
38	Oneâ€Pot Synthesis of CoS ₂ Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. ChemSusChem, 2022, 15, .	6.8	29
39	Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers. Brain Research, 2014, 1565, 18-27.	2.2	28
40	Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. Angewandte Chemie, 2018, 130, 9897-9901.	2.0	27
41	Nanoscale boron carbonitride semiconductors for photoredox catalysis. Nanoscale, 2020, 12, 3593-3604.	5.6	27
42	Biomimetic Donor–Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. Angewandte Chemie, 2018, 130, 8865-8869.	2.0	26
43	Marangoni ring-templated vertically aligned ZnO nanotube arrays with enhanced photocatalytic hydrogen production. Materials Chemistry and Physics, 2015, 149-150, 12-16.	4.0	25
44	In Situ Synthesis of Phosphorusâ€Doped Polymeric Carbon Nitride Sheets for Photoelectrochemical Water Oxidation. Solar Rrl, 2020, 4, 2000168.	5.8	25
45	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	11.2	24
46	High-performance potassium poly(heptazine imide) films for photoelectrochemical water splitting. Chemical Science, 2022, 13, 7541-7551.	7.4	24
47	LiCl as Phaseâ€Transfer Catalysts to Synthesize Thin Co ₂ P Nanosheets for Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 1911-1915.	6.8	22
48	Metallfreie Borâ€haltige Heterogenkatalysatoren. Angewandte Chemie, 2017, 129, 15712-15724.	2.0	19
49	Photoelectrochemical conversion of CO ₂ into HCOOH using a polymeric carbon nitride photoanode and Cu cathode. Sustainable Energy and Fuels, 2020, 4, 5812-5817.	4.9	19
50	Transparent conductive oxides in photoanodes for solar water oxidation. Nanoscale Advances, 2020, 2, 626-632.	4.6	19
51	Role of carbon quantum dots on Nickel titanate to promote water oxidation reaction under visible light illumination. Journal of Colloid and Interface Science, 2022, 607, 203-209.	9.4	19
52	Supramolecular organization of melem for the synthesis of photoactive porous carbon nitride rods. Nanoscale, 2021, 13, 19511-19517.	5.6	18
53	Development of soluble UiO-66 to improve photocatalytic CO2 reduction. Catalysis Today, 2023, 410, 282-288.	4.4	17
54	Water Oxidation with Cobalt‣oaded Linear Conjugated Polymer Photocatalysts. Angewandte Chemie, 2020, 132, 18854-18859.	2.0	16

YUANXING FANG

#	Article	IF	CITATIONS
55	Fluorescent Se-modified carbon nitride nanosheets as biomimetic catalases for free-radical scavenging. Chemical Communications, 2020, 56, 916-919.	4.1	14
56	Coating Polymeric Carbon Nitride on Conductive Carbon Cloth to Promote Charge Separation for Photocatalytic Water Splitting. ChemSusChem, 2021, 14, 3821-3824.	6.8	14
57	Roles of Metal-Free Materials in Photoelectrodes for Water Splitting. Accounts of Materials Research, 2021, 2, 933-943.	11.7	12
58	Ultra rapid direct heating synthesis of ZnO nanorods with improved light trapping from stacked photoanodes for high efficiency photocatalytic water splitting. Nanotechnology, 2017, 28, 355402.	2.6	11
59	The role of carbon dots – derived underlayer in hematite photoanodes. Nanoscale, 2020, 12, 20220-20229.	5.6	9
60	Multimetallic Oxynitrides Nanoparticles for a New Generation of Photocatalysts. Chemistry - A European Journal, 2019, 25, 16676-16682.	3.3	8
61	Signal Enhancement with Stacked Magnets for High-Resolution Radio Frequency Clow Discharge Mass Spectrometry. Analytical Chemistry, 2017, 89, 1382-1388.	6.5	6
62	A Borocarbonitride Ceramic Aerogel for Photoredox Catalysis. Angewandte Chemie, 2019, 131, 6094-6098.	2.0	6
63	Artificial Photosynthesis by MOFs: Water Splitting and CO2 Conversion. Series on Chemistry, Energy and the Environment, 2020, , 427-452.	0.3	0