
Naoyuki Ishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1246135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy. Langmuir, 2000, 16, 6377-6380.	3.5	612
2	Attraction between Hydrophobic Surfaces with and without Gas Phase. Langmuir, 2000, 16, 5681-5687.	3.5	204
3	Direct Observation of the Phase Transition for a Poly(<i>N</i> -isopropylacryamide) Layer Grafted onto a Solid Surface by AFM and QCM-D. Langmuir, 2007, 23, 11083-11088.	3.5	123
4	Effect of Grafting Density on Phase Transition Behavior for Poly(<i>N</i> -isopropylacryamide) Brushes in Aqueous Solutions Studied by AFM and QCM-D. Macromolecules, 2010, 43, 7269-7276.	4.8	83
5	Effects of Hydrophobizing Methods of Surfaces on the Interaction in Aqueous Solutions. Journal of Colloid and Interface Science, 1999, 216, 387-393.	9.4	73
6	Temperature controlled surface hydrophobicity and interaction forces induced by poly (N-isopropylacrylamide). Journal of Colloid and Interface Science, 2010, 342, 586-592.	9.4	72
7	Direct measurement of hydrophobic particle–bubble interactions in aqueous solutions by atomic force microscopy: Effect of particle hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 293-299.	4.7	57
8	Hydrophobic Attraction between Silanated Silica Surfaces in the Absence of Bridging Bubbles. Langmuir, 2012, 28, 13952-13959.	3.5	57
9	Optical Observation of Gas Bridging between Hydrophobic Surfaces in Water. Journal of Colloid and Interface Science, 2002, 253, 112-116.	9.4	50
10	Interaction forces between chemically modified hydrophobic surfaces evaluated by AFM—The role of nanoscopic bubbles in the interactions. Minerals Engineering, 2006, 19, 719-725.	4.3	49
11	Salt-Induced Structural Behavior for Poly(<i>N</i> -isopropylacryamide) Grafted onto Solid Surface Observed Directly by AFM and QCM-D. Macromolecules, 2007, 40, 9045-9052.	4.8	49
12	Interaction forces measured between poly(N-isopropylacrylamide) grafted surface and hydrophobic particle. Journal of Colloid and Interface Science, 2006, 297, 513-519.	9.4	47
13	Characteristics of Sugar Surfactants in Stabilizing Proteins During Freeze–Thawing and Freeze–Drying. Journal of Pharmaceutical Sciences, 2014, 103, 1628-1637.	3.3	34
14	The size of particle aggregates produced by flocculation with PNIPAM, as a function of temperature. Journal of Colloid and Interface Science, 2011, 354, 82-88.	9.4	31
15	Analysis of Adsorption and Binding Behaviors of Silver Nanoparticles onto a Pyridyl-Terminated Surface Using XPS and AFM. Langmuir, 2011, 27, 12916-12922.	3.5	26
16	Hydrophobic Attraction Measured between Asymmetric Hydrophobic Surfaces. Langmuir, 2018, 34, 3588-3596.	3.5	22
17	The Use of a Combination of a Sugar and Surfactant to Stabilize Au Nanoparticle Dispersion against Aggregation during Freeze-Drying. Langmuir, 2020, 36, 6698-6705.	3.5	22
18	Surface characterization of nanoparticles carrying pH-responsive polymer hair. Polymer, 2010, 51, 6240-6247.	3.8	21

ΝΑΟΥUKI ISHIDA

#	Article	IF	CITATIONS
19	Surfactant-Free Solid Dispersions of Hydrophobic Drugs in an Amorphous Sugar Matrix Dried from an Organic Solvent. Molecular Pharmaceutics, 2017, 14, 791-798.	4.6	19
20	Direct Measurement of Interaction Forces between Surfaces in Liquids Using Atomic Force Microscopy. KONA Powder and Particle Journal, 2019, 36, 187-200.	1.7	18
21	Characterizing the structural transition of cationic DPPC liposomes from the approach of TEM, SAXS and AFM measurements. Colloids and Surfaces B: Biointerfaces, 2008, 67, 73-78.	5.0	17
22	Inhibitory effects of additives and heat treatment on the crystallization of freeze-dried sugar. Journal of Food Engineering, 2015, 155, 37-44.	5.2	17
23	Surfactant-free solid dispersion of fat-soluble flavour in an amorphous sugar matrix. Food Chemistry, 2016, 197, 1136-1142.	8.2	15
24	Adsorption characteristics of various proteins on a metal surface in the presence of an external electric potential. Colloids and Surfaces B: Biointerfaces, 2018, 166, 262-268.	5.0	14
25	Ultrafast charge transfer at the electrodeâ^'electrolyte interface via an artificial dielectric layer. Journal of Power Sources, 2021, 494, 229710.	7.8	14
26	Characteristics of amorphous matrices composed of different types of sugars in encapsulating emulsion oil droplets during freeze-drying. Food Research International, 2013, 51, 201-207.	6.2	13
27	Effect of surface hydrophobicity on short-range hydrophobic attraction between silanated silica surfaces. Advanced Powder Technology, 2015, 26, 1729-1733.	4.1	12
28	Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential. Colloids and Surfaces B: Biointerfaces, 2016, 147, 9-16.	5.0	12
29	Characteristics of proteinaceous additives in stabilizing enzymes during freeze-thawing and -drying. Bioscience, Biotechnology and Biochemistry, 2017, 81, 687-697.	1.3	12
30	CHARACTERISTICS AND BEHAVIOR OF NANOPARTICLES AND ITS DISPERSION SYSTEMS. , 2008, , 113-176.		11
31	Controlling the drying process in vacuum foam drying under low vacuum conditions by inducing foaming by needle stimulation of the solution. Drying Technology, 2019, 37, 1520-1527.	3.1	11
32	Physical Stability of an Amorphous Sugar Matrix Dried From Methanol as an Amorphous Solid Dispersion Carrier and the Influence of Heat Treatment. Journal of Pharmaceutical Sciences, 2019, 108, 2056-2062.	3.3	10
33	Sole-amorphous-sugar-based solid dispersion of curcumin and the influence of formulation composition and heat treatment on the dissolution of curcumin. Drying Technology, 2021, 39, 2065-2074.	3.1	9
34	Crystallization characteristics of amorphous trehalose dried from alcohol. Journal of Food Engineering, 2021, 292, 110325.	5.2	9
35	Improving the Physical Stability of Freeze-Dried Amorphous Sugar Matrices by Compression at Several Hundreds MPa. Journal of Pharmaceutical Sciences, 2013, 102, 2187-2197.	3.3	8
36	Influence of sugar surfactant structure on the encapsulation of oil droplets in an amorphous sugar matrix during freeze-drying. Food Research International, 2015, 70, 143-149.	6.2	8

Ναογυκι Ιςμιda

#	Article	IF	CITATIONS
37	Static Method to Evaluate Interaction Forces by AFM. Journal of Colloid and Interface Science, 2001, 235, 190-193.	9.4	6
38	Capillary Forces between Planar Anchoring Surfaces in the Isotropic Phase of a Nematic Liquid Crystal. Chemistry Letters, 2005, 34, 1318-1319.	1.3	6
39	Stratification of Colloidal Particles on a Surface: Study by a Colloidal Probe Atomic Force Microscopy Combined with a Transform Theory. Journal of Physical Chemistry B, 2018, 122, 4592-4599.	2.6	6
40	Direct measurement of interaction force between hydrophilic silica surfaces in triblock copolymer solutions with salt by atomic force microscopy. Advanced Powder Technology, 2021, 32, 30-36.	4.1	6
41	Role of interfacial interactions in ordering of two-dimensional colloidal self-assemblies on polyelectrolyte multilayer surfaces. Soft Matter, 2013, 9, 3155.	2.7	5
42	Nanostructures of 3-aminopropyltriethoxysilane created on flat substrate by combining colloid lithography and vapor deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 39-45.	4.7	5
43	Influence of an external electric field on removal of protein fouling on a stainless steel surface by proteolytic enzymes. Colloids and Surfaces B: Biointerfaces, 2017, 159, 118-124.	5.0	5
44	Comparison of improvements of aqueous dissolution of structurally analogous hydrophobic drugs by amorphous solid dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127744.	4.7	5
45	Extraordinary high preservation of the dispersion state of Au nanoparticles during freeze-thawing and freeze-drying with gum arabic. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128392.	4.7	5
46	pH Effect on Properties of Surfactant-free Oil-in-water Emulsion Prepared with Oleic Acid. Chemistry Letters, 2014, 43, 604-606.	1.3	4
47	The use of a proteinaceous "cushion†with a polystyreneâ€binding peptide tag to control the orientation and function of a target peptide adsorbed to a hydrophilic polystyrene surface. Biotechnology Progress, 2016, 32, 527-534.	2.6	4
48	Inhibiting Au nanoparticle aggregation in freeze-thawing by presence of various additives. Advanced Powder Technology, 2021, 32, 3517-3524.	4.1	4
49	Spontaneous foaming during vacuum drying of polyvinylpyrrolidone- and sugar-alcohol mixtures and enhancement of water-dissolution of water insoluble drug. Drying Technology, 2022, 40, 604-614.	3.1	4
50	Forces between zinc sulphide surfaces; amplification of the hydrophobic attraction by surface charge. Physical Chemistry Chemical Physics, 2019, 21, 20055-20064.	2.8	3
51	Interaction forces between a poly (N-isopropylacryamide) layer grafted onto a solid surface and a hydrophobic particle. Advanced Powder Technology, 2007, 18, 631-642.	4.1	2
52	Effect of Electrolyte and Alcohol in Solution on the Hydrophobic Attraction between Alkoxylated Silica Surfaces. Chemistry Letters, 2012, 41, 1273-1275.	1.3	2
53	Immobilization of surface non-affinitive protein onto a metal surface by an external electric field. Journal of Bioscience and Bioengineering, 2020, 129, 348-353.	2.2	2
54	Induction of foaming in vacuum drying by needle stimulation and the impact of solution viscosity, vapor pressure, and the type of solute and solvent. Drying Technology, 2022, 40, 3249-3261.	3.1	2

ΝΑΟΥUKI ISHIDA

#	Article	IF	CITATIONS
55	Stimulus-Responsive Soft Surface/Interface Toward Applications in Adhesion, Sensor and Biomaterial. Biologically-inspired Systems, 2018, , 287-397.	0.2	1
56	Interaction Forces Between Thermoresponsive Surface and Colloidal Particle in Aqueous Solution Studied Using Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2006, 942, 1.	0.1	0
57	A New Method of 'Solid Inking' and Its Application to Direct Patterning of InAs Nanowire Using Dip-Pen Nanolithography. IEICE Transactions on Electronics, 2011, E94-C, 146-150.	0.6	Ο
58	Water-in-oil Microemulsion Formation with Aqueous C <i>n</i> -TAB Solution and H-AOT/Isooctane Solution. Chemistry Letters, 2012, 41, 1072-1074.	1.3	0
59	Effect of Surface Hydrophobicity on Short-Range Hydrophobic Attraction between Silanated Silica Surfaces. Journal of the Society of Powder Technology, Japan, 2014, 51, 343-348.	0.1	Ο
60	Effect of Lipid Amount on Surfactant-free Solid Lipid Nanoparticle Formation by Hot Homogenization. Chemistry Letters, 2014, 43, 1011-1013.	1.3	0
61	Evaluation of the Correlation between Surface Forces in Organic Solvents and Affinity of Solvent Molecules with Surfaces. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2021, 28, 18-25.	0.0	0
62	Foaming characteristics of sugar- and polyvinylpyrrolidone-alcohol solutions during vacuum foam drying: A rheological approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127174.	4.7	0
63	Direct measurements of interaction forces of bovine serum albumin and lysozyme with stainless steel by atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127137.	4.7	0
64	Experimental Investigation of the Interaction Forces between Soft Interfaces. Oleoscience, 2011, 11, 79-84.	0.0	0
65	Microstructural Observation and Property Characterization of Stimuli-Responsive Polymer Grafted onto Solid Surface Using AFM and QCM-D. Oleoscience, 2012, 12, 151-158.	0.0	0
66	Experimental Evaluations for the Interaction Forces between Soft Interfaces. Journal of the Society of Powder Technology, Japan, 2013, 50, 567-575.	0.1	0
67	Direct Measurement of Solvophobic Force between Particles in Liquids and Its Origin. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 38-43.	0.0	0
68	Direct Measurement of Hydrophobic Attraction and Its Mechanism of Generation. Oleoscience, 2015, 15, 253-259.	0.0	0
69	1.9.1â€,Interactions in Gases. Journal of the Society of Powder Technology, Japan, 2017, 54, 739-743.	0.1	0
70	Direct Measurement of Surface Forces:. Journal of the Japan Society of Colour Material, 2017, 90, 333-338.	0.1	0
71	1. Particle Characteristics and Measurement 1.9â€,Interparticle Forces 1.9.2â€,Interactions in Liquids. Journal of the Society of Powder Technology, Japan, 2018, 55, 104-112.	0.1	0
72	1.â€,Particle Characteristics and Measurement 1.9â€,Interparticle Forces 1.9.3â€,Effects of Surface Deformation, Geometry and Roughness on Forces. Journal of the Society of Powder Technology, Japan, 2018, 55, 208-211.	0.1	0

#	Article	IF	CITATIONS
73	1.â€,Particle Characteristics and Measurement1.9â€,Interparticle Forces1.9.4â€,Measurement Methods of Interparticle Forces. Journal of the Society of Powder Technology, Japan, 2018, 55, 542-546.	0.1	0
74	Dense immobilization of gold nanoparticles onto a cotton textile for obtaining plasmonic heating. MRS Advances, 2022, , 1-5.	0.9	0