List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1245798/publications.pdf Version: 2024-02-01

ICNANIO ROPPOLO

#	Article	IF	CITATIONS
1	Thermochromic photoluminescent 3D printed polymeric devices based on copper-iodide clusters. Additive Manufacturing, 2022, 49, 102504.	1.7	4
2	Current and emerging trends in polymeric 3D printed microfluidic devices. Additive Manufacturing, 2022, 55, 102867.	1.7	29
3	3D printing of fully cellulose-based hydrogels by digital light processing. Sustainable Materials and Technologies, 2022, 32, e00444.	1.7	10
4	Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer. Advanced Materials Technologies, 2022, 7, .	3.0	12
5	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. , 2021, 3, 1-17.		58
6	Functional 3D printing: Approaches and bioapplications. Biosensors and Bioelectronics, 2021, 175, 112849.	5.3	83
7	3D-printed self-healing hydrogels via Digital Light Processing. Nature Communications, 2021, 12, 2462.	5.8	122
8	Programming the microstructure of magnetic nanocomposites in DLP 3D printing. Additive Manufacturing, 2021, 47, 102343.	1.7	11
9	Hybrid silica micro-particles with light-responsive surface properties and Janus-like character. Polymer Chemistry, 2021, 12, 3925-3938.	1.9	2
10	Effects of the Manufacturing Methods on the Mechanical Properties of a Medical-Grade Copolymer Poly(L-lactide-co-D,L-lactide) and Poly(L-lactide-co-Îμ-caprolactone) Blend. Materials, 2021, 14, 6381.	1.3	0
11	CO2 permeability control in 3D printed light responsive structures. Applied Materials Today, 2020, 18, 100470.	2.3	15
12	Come to light: Detailed analysis of thermally treated Phenyl modified Carbon Nitride Polymorphs for bright phosphors in lighting applications. Applied Surface Science, 2020, 504, 144330.	3.1	25
13	A modular 3D printed lab-on-a-chip for early cancer detection. Lab on A Chip, 2020, 20, 665-674.	3.1	44
14	Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines, 2020, 8, 52.	1.2	52
15	Multiacrylated Cyclodextrin: A Bioâ€Derived Photocurable Macromer for VAT 3D Printing. Macromolecular Materials and Engineering, 2020, 305, 2000350.	1.7	21
16	Fabrication and Functionalization of 3D Printed Polydimethylsiloxaneâ€Based Microfluidic Devices Obtained through Digital Light Processing. Advanced Materials Technologies, 2020, 5, 2000374.	3.0	39
17	Highly efficient visible light phenyl modified carbon nitride/TiO2 photocatalyst for environmental applications. Applied Surface Science, 2020, 531, 147394.	3.1	19
18	Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing. Nanomaterials, 2020, 10, 1788.	1.9	41

#	Article	IF	CITATIONS
19	Recent Trends in Applying Ortho-Nitrobenzyl Esters for the Design of Photo-Responsive Polymer Networks. Materials, 2020, 13, 2777.	1.3	44
20	Laserâ€Triggered Writing and Biofunctionalization of Thiolâ€Ene Networks. Macromolecular Rapid Communications, 2020, 41, e2000084.	2.0	7
21	Electrokinetics In Nanocomposites: Nanoparticle Reshaping and Ion Migration in Nanocomposite Ultrafast Ionic Actuators: The Converse Piezo–Electro–Kinetic Effect (Adv. Funct. Mater. 31/2019). Advanced Functional Materials, 2019, 29, 1970215.	7.8	0
22	3D Printing of Magnetoresponsive Polymeric Materials with Tunable Mechanical and Magnetic Properties by Digital Light Processing. Advanced Materials Technologies, 2019, 4, 1900505.	3.0	87
23	3Dâ€Printing of Highâ€Iº Thiolâ€Ene Resins with Spiroâ€Orthoesters as Antiâ€Shrinkage Additive. Macromolecula Materials and Engineering, 2019, 304, 1900515.	^{Ir} 1.7	13
24	Thiol–yne chemistry for 3D printing: exploiting an off-stoichiometric route for selective functionalization of 3D objects. Polymer Chemistry, 2019, 10, 5950-5958.	1.9	37
25	Dual ure Coatings: Spiroorthoesters as Volumeâ€Controlling Additives in Thiol–Ene Reactions. Macromolecular Materials and Engineering, 2019, 304, 1800627.	1.7	6
26	Nanoparticle Reshaping and Ion Migration in Nanocomposite Ultrafast Ionic Actuators: The Converse Piezo–Electro–Kinetic Effect. Advanced Functional Materials, 2019, 29, 1902941.	7.8	2
27	Directed motion of water droplets on multi-gradient photopolymer surfaces. Polymer Chemistry, 2019, 10, 1882-1893.	1.9	24
28	Multifunctional flexible membranes based on reduced graphene oxide/tin dioxide nanocomposite and cellulose fibers. Electrochimica Acta, 2019, 306, 420-426.	2.6	19
29	Study on the Printability through Digital Light Processing Technique of Ionic Liquids for CO2 Capture. Polymers, 2019, 11, 1932.	2.0	7
30	Graphene Oxide Finely Tunes the Bioactivity and Drug Delivery of Mesoporous ZnO Scaffolds. ACS Applied Materials & Interfaces, 2019, 11, 449-456.	4.0	31
31	3D Printing/Interfacial Polymerization Coupling for the Fabrication of Conductive Hydrogel. Macromolecular Materials and Engineering, 2018, 303, 1700356.	1.7	47
32	Performance comparison of hybrid resistive switching devices based on solution-processable nanocomposites. Applied Surface Science, 2018, 443, 475-483.	3.1	13
33	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie, 2018, 130, 2377-2380.	1.6	7
34	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 2353-2356.	7.2	89
35	Stimuli-responsive thiol-epoxy networks with photo-switchable bulk and surface properties. RSC Advances, 2018, 8, 41904-41914.	1.7	19
36	Three-Dimensional Printed Photoluminescent Polymeric Waveguides. ACS Applied Materials & amp; Interfaces, 2018, 10, 39319-39326.	4.0	32

#	Article	IF	CITATIONS
37	Development of New Hybrid Acrylic/Epoxy DLP-3D Printable Materials. Inventions, 2018, 3, 29.	1.3	36
38	New Horizons in Cationic Photopolymerization. Polymers, 2018, 10, 136.	2.0	77
39	In situ generation of silver nanoparticles in PVDF for the development of resistive switching devices. Applied Surface Science, 2018, 455, 418-424.	3.1	17
40	Resistive switching and impedance properties of soft nanocomposites based on Ag nanoparticles. Applied Surface Science, 2017, 424, 352-358.	3.1	9
41	Highly performing ionic liquid enriched hybrid RSDs. Journal of Materials Chemistry C, 2017, 5, 6144-6155.	2.7	14
42	Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 19193-19201.	4.0	55
43	Study of graphene oxide-based 3D printable composites: Effect of the in situ reduction. Composites Part B: Engineering, 2017, 124, 9-15.	5.9	98
44	Resistive Switching in Polymer Nanocomposites by Matrix-Controlled in Situ Nanoparticles Generation. Journal of Physical Chemistry C, 2017, 121, 14285-14295.	1.5	21
45	A Robust Capacitive Digital Read-Out Circuit for a Scalable Tactile Skin. IEEE Sensors Journal, 2017, 17, 2682-2695.	2.4	17
46	3D printable light-responsive polymers. Materials Horizons, 2017, 4, 396-401.	6.4	88
47	Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer, 2017, 109, 246-253.	1.8	157
48	Light triggered formation of photo-responsive epoxy based networks. Polymer, 2017, 109, 349-357.	1.8	22
49	Spin-coated silver nanocomposite resistive switching devices. Microelectronic Engineering, 2017, 168, 27-31.	1.1	35
50	The effect of graphene oxide on <scp>UV</scp> curing kinetics and properties of <scp>SU8</scp> nanocomposites. Polymer International, 2017, 66, 405-417.	1.6	18
51	In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures. Materials, 2016, 9, 589.	1.3	69
52	Silver nanoparticle ink technology: state of the art. Nanotechnology, Science and Applications, 2016, 9, 1.	4.6	118
53	3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles. Advanced Materials, 2016, 28, 3712-3717.	11.1	200
54	3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016). Advanced Materials, 2016, 28, 3711-3711.	11.1	7

#	Article	IF	CITATIONS
55	Ionic liquid-enhanced soft resistive switching devices. RSC Advances, 2016, 6, 94128-94138.	1.7	31
56	Resistive hysteresis in flexible nanocomposites and colloidal suspensions: interfacial coupling mechanism unveiled. RSC Advances, 2016, 6, 56661-56667.	1.7	48
57	3D Printed PEC-Based Hybrid Nanocomposites Obtained by Sol–Gel Technique. ACS Applied Materials & Interfaces, 2016, 8, 5627-5633.	4.0	81
58	Dual step irradiation process for in situ generation and patterning of silver nanoparticles in a photocured film. RSC Advances, 2016, 6, 14832-14843.	1.7	12
59	Self-standing polymer-functionalized reduced graphene oxide papers obtained via a UV-process. RSC Advances, 2015, 5, 95805-95812.	1.7	10
60	Study of benzophenone grafting on reduced graphene oxide by unconventional techniques. New Journal of Chemistry, 2015, 39, 2966-2972.	1.4	7
61	Study of Inkâ€Jet Printable Vinyl Etherâ€Graphene UVâ€Curable Formulations. Macromolecular Materials and Engineering, 2015, 300, 340-345.	1.7	16
62	In Situ Synthesis of Polymer Embedded Silver Nanoparticles via Photopolymerization. Macromolecular Materials and Engineering, 2015, 300, 226-233.	1.7	36
63	Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement. Nano Research, 2015, 8, 1956-1963.	5.8	26
64	Degradable photopolymerized thiol-based solid polymer electrolytes towards greener Li-ion batteries. Polymer, 2015, 75, 64-72.	1.8	13
65	Gold-functionalized graphene as conductive filler in UV-curable epoxy resin. Journal of Materials Science, 2015, 50, 605-610.	1.7	21
66	Interpenetrated hybrid thiol-ene/epoxy UV-cured network with enhanced impact resistance. Progress in Organic Coatings, 2015, 78, 244-248.	1.9	22
67	Multifunctional NIR-reflective and self-cleaning UV-cured coating for solar cell applications based on cycloaliphatic epoxy resin. Progress in Organic Coatings, 2014, 77, 458-462.	1.9	30
68	Comprehensive study of the templating effect on the ZnO nanostructure formation within porous hard membranes. New Journal of Chemistry, 2014, 38, 2058.	1.4	28
69	Epoxy resins reinforced with TiO ₂ generated by nonhydrolytic sol–gel process. Journal of Applied Polymer Science, 2014, 131, .	1.3	15
70	A powerful tool for graphene functionalization: Benzophenone mediated UV-grafting. Carbon, 2014, 77, 226-235.	5.4	41
71	Photoluminescent Epoxy/Gd ₂ O ₃ :Eu ³⁺ UVâ€cured Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 181-189.	1.7	8
72	Luminescence variation by rigidity control of acrylic composite materials. Journal of Materials Chemistry C, 2013, 1, 5725.	2.7	22

#	Article	IF	CITATIONS
73	Radical diffusion engineering: tailored nanocomposite materials for piezoresistive inkjet printed strain measurement. RSC Advances, 2013, 3, 3446.	1.7	43
74	Multifunctional Luminescent Organic/Inorganic Hybrid Films. Macromolecular Materials and Engineering, 2012, 297, 680-688.	1.7	10
75	Luminescence thermochromism of acrylic materials incorporating copper iodide clusters. Journal of Materials Chemistry, 2011, 21, 19106.	6.7	30
76	Polysulfone/Metal Nanocomposites by Simultaneous Photoinduced Crosslinking and Redox Reaction. Macromolecular Materials and Engineering, 2011, 296, 820-825.	1.7	27
77	Nanocomposite epoxy coatings containing rare earth ion-doped LaF3 nanoparticles: Film preparation and characterization. Progress in Organic Coatings, 2009, 65, 431-434.	1.9	17
78	Siloxane additive as modifier in cationic UV curable coatings. Progress in Organic Coatings, 2006, 57, 44-49.	1.9	33
79	Singleâ€Step 3D Printing of Silverâ€Patterned Polymeric Devices for Bacteria Proliferation Control. Macromolecular Materials and Engineering, 0 – 2100596	1.7	5