Jean-Philippe Julien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1245796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature, 2011, 477, 466-470.	13.7	1,397
2	A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathogens, 2013, 9, e1003618.	2.1	835
3	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	13.7	794
4	Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1477-1483.	6.0	793
5	Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science, 2013, 340, 711-716.	6.0	680
6	Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1484-1490.	6.0	662
7	A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science, 2011, 334, 1097-1103.	6.0	644
8	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	6.0	482
9	HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science, 2016, 351, 1458-1463.	6.0	382
10	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	13.5	341
11	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	3.3	324
12	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	6.6	323
13	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	3.6	314
14	Broadly Neutralizing Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the HIV-1 gp120 V3 Base and Multiple Surrounding Glycans. PLoS Pathogens, 2013, 9, e1003342.	2.1	267
15	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	1.5	247
16	Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4351-4356.	3.3	236
17	A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure. Immunity, 2017, 46, 690-702.	6.6	216
18	The structural basis of modified nucleosome recognition by 53BP1. Nature, 2016, 536, 100-103.	13.7	201

#	Article	IF	CITATIONS
19	Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18256-18261.	3.3	188
20	The Effects of Somatic Hypermutation on Neutralization and Binding in the PGT121 Family of Broadly Neutralizing HIV Antibodies. PLoS Pathogens, 2013, 9, e1003754.	2.1	175
21	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	2.9	171
22	Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies. Cell, 2014, 159, 69-79.	13.5	161
23	Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV. Science Translational Medicine, 2014, 6, 236ra63.	5.8	160
24	Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology, 2014, 11, 41.	0.9	139
25	De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science, 2020, 368, .	6.0	137
26	Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nature Communications, 2015, 6, 6144.	5.8	130
27	Natural Parasite Exposure Induces Protective Human Anti-Malarial Antibodies. Immunity, 2017, 47, 1197-1209.e10.	6.6	129
28	Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11947-11952.	3.3	127
29	Molecular basis of human CD22 function and therapeutic targeting. Nature Communications, 2017, 8, 764.	5.8	114
30	CD4-Induced Activation in a Soluble HIV-1 Env Trimer. Structure, 2014, 22, 974-984.	1.6	108
31	Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathogens, 2016, 12, e1005815.	2.1	104
32	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	2.1	100
33	Computational Design of High-Affinity Epitope Scaffolds by Backbone Grafting of a Linear Epitope. Journal of Molecular Biology, 2012, 415, 175-192.	2.0	99
34	Antihomotypic affinity maturation improves human B cell responses against a repetitive epitope. Science, 2018, 360, 1358-1362.	6.0	89
35	Structural and Functional Characterization of PseC, an Aminotransferase Involved in the Biosynthesis of Pseudaminic Acid, an Essential Flagellar Modification in Helicobacter pylori. Journal of Biological Chemistry, 2006, 281, 8907-8916.	1.6	88
36	Structural insights into key sites of vulnerability on <scp>HIV</scp> â€1 Env and influenza <scp>HA</scp> . Immunological Reviews, 2012, 250, 180-198.	2.8	84

JEAN-PHILIPPE JULIEN

#	Article	IF	CITATIONS
37	Structural Details of HIV-1 Recognition by the Broadly Neutralizing Monoclonal Antibody 2F5: Epitope Conformation, Antigen-Recognition Loop Mobility, and Anion-Binding Site. Journal of Molecular Biology, 2008, 384, 377-392.	2.0	81
38	Rare PfCSP C-terminal antibodies induced by live sporozoite vaccination are ineffective against malaria infection. Journal of Experimental Medicine, 2018, 215, 63-75.	4.2	79
39	Influences on Trimerization and Aggregation of Soluble, Cleaved HIV-1 SOSIP Envelope Glycoprotein. Journal of Virology, 2013, 87, 9873-9885.	1.5	76
40	Antibodies against Plasmodium falciparum malaria at the molecular level. Nature Reviews Immunology, 2019, 19, 761-775.	10.6	73
41	Structural Characterization of Cleaved, Soluble HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2013, 87, 9865-9872.	1.5	71
42	Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism. PLoS Pathogens, 2012, 8, e1002916.	2.1	68
43	Structure of 2G12 Fab ₂ in Complex with Soluble and Fully Glycosylated HIV-1 Env by Negative-Stain Single-Particle Electron Microscopy. Journal of Virology, 2014, 88, 10177-10188.	1.5	67
44	Ablation of the Complementarity-Determining Region H3 Apex of the Anti-HIV-1 Broadly Neutralizing Antibody 2F5 Abrogates Neutralizing Capacity without Affecting Core Epitope Binding. Journal of Virology, 2010, 84, 4136-4147.	1.5	64
45	Evolution of protective human antibodies against Plasmodium falciparum circumsporozoite protein repeat motifs. Nature Medicine, 2020, 26, 1135-1145.	15.2	64
46	Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25. Nature Communications, 2017, 8, 1568.	5.8	59
47	Neutralizing Epitopes in the Membrane-Proximal External Region of HIV-1 gp41 Are Influenced by the Transmembrane Domain and the Plasma Membrane. Journal of Virology, 2012, 86, 2930-2941.	1.5	55
48	Crystallographic Definition of the Epitope Promiscuity of the Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2F5: Vaccine Design Implications. Journal of Virology, 2009, 83, 11862-11875.	1.5	52
49	Partial Enzymatic Deglycosylation Preserves the Structure of Cleaved Recombinant HIV-1 Envelope Glycoprotein Trimers. Journal of Biological Chemistry, 2012, 287, 24239-24254.	1.6	50
50	Structural delineation of potent transmission-blocking epitope I on malaria antigen Pfs48/45. Nature Communications, 2018, 9, 4458.	5.8	48
51	Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nature Communications, 2021, 12, 3661.	5.8	48
52	A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nature Communications, 2020, 11, 5091.	5.8	45
53	Ebolavirus VP35 Coats the Backbone of Double-Stranded RNA for Interferon Antagonism. Journal of Virology, 2013, 87, 10385-10388.	1.5	44
54	Structural Basis of Enhanced Crystallizability Induced by a Molecular Chaperone for Antibody Antigen-Binding Fragments. Journal of Molecular Biology, 2018, 430, 322-336.	2.0	39

JEAN-PHILIPPE JULIEN

#	Article	IF	CITATIONS
55	Potent antibody lineage against malaria transmission elicited by human vaccination with Pfs25. Nature Communications, 2019, 10, 4328.	5.8	37
56	Molecular recognition of the native HIV-1 MPER revealed by STED microscopy of single virions. Nature Communications, 2019, 10, 78.	5.8	31
57	Redesigned HIV antibodies exhibit enhanced neutralizing potency and breadth. Journal of Clinical Investigation, 2015, 125, 2523-2531.	3.9	31
58	Discrete TCR Binding Kinetics Control Invariant NKT Cell Selection and Central Priming. Journal of Immunology, 2016, 197, 3959-3969.	0.4	30
59	Recognition of Semaphorin Proteins by P.Âsordellii Lethal Toxin Reveals Principles of Receptor Specificity in Clostridial Toxins. Cell, 2020, 182, 345-356.e16.	13.5	29
60	Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice. Science Advances, 2021, 7, eabj1476.	4.7	27
61	Cholesterol Interaction Directly Enhances Intrinsic Activity of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Cells, 2019, 8, 804.	1.8	23
62	Structure-guided design fine-tunes pharmacokinetics, tolerability, and antitumor profile of multispecific frizzled antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6812-6817.	3.3	23
63	Structural characterization of the ICOS/ICOS-L immune complex reveals high molecular mimicry by therapeutic antibodies. Nature Communications, 2020, 11, 5066.	5.8	23
64	Structural Constraints Imposed by the Conserved Fusion Peptide on the HIV-1 gp41 Epitope Recognized by the Broadly Neutralizing Antibody 2F5. Journal of Physical Chemistry B, 2009, 113, 13626-13637.	1.2	21
65	A high-affinity antibody against the CSP N-terminal domain lacks <i>Plasmodium falciparum</i> inhibitory activity. Journal of Experimental Medicine, 2020, 217, .	4.2	21
66	Crystal Structure of the Complex between the Fab′ Fragment of the Cross-Neutralizing Anti-HIV-1 Antibody 2F5 and the Fab Fragment of Its Anti-idiotypic Antibody 3H6. Journal of Molecular Biology, 2008, 382, 910-919.	2.0	20
67	Structure-Based Design of a Protein Immunogen that Displays an HIV-1 gp41 Neutralizing Epitope. Journal of Molecular Biology, 2011, 414, 460-476.	2.0	20
68	N-Linked Glycosylation Regulates CD22 Organization and Function. Frontiers in Immunology, 2019, 10, 699.	2.2	20
69	Dual Inhibition of Vacuolar-ATPase and TMPRSS2 Is Required for Complete Blockade of SARS-CoV-2 Entry into Cells. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	20
70	Molecular Basis of Unusually High Neutralization Resistance in Tier 3 HIV-1 Strain 253-11. Journal of Virology, 2018, 92, .	1.5	16
71	Structural ordering of the Plasmodium berghei circumsporozoite protein repeats by inhibitory antibody 3D11. ELife, 2020, 9, .	2.8	15
72	A GPC2 antibody-drug conjugate is efficacious against neuroblastoma and small-cell lung cancer via binding a conformational epitope. Cell Reports Medicine, 2021, 2, 100344.	3.3	14

JEAN-PHILIPPE JULIEN

#	Article	IF	CITATIONS
73	Interaction of Anti-HIV Type 1 Antibody 2F5 with Phospholipid Bilayers and Its Relevance for the Mechanism of Virus Neutralization. AIDS Research and Human Retroviruses, 2011, 27, 863-876.	0.5	11
74	Engineering pan–HIV-1 neutralization potency through multispecific antibody avidity. Proceedings of the United States of America, 2022, 119, .	3.3	11
75	Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments. Cell Reports, 2020, 32, 108037.	2.9	10
76	Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease. Scientific Reports, 2021, 11, 23315.	1.6	10
77	Peek-Peak-Pique: Repeating Motifs of Subtle Variance Are Targets for Potent Malaria Antibodies. Immunity, 2018, 48, 851-854.	6.6	7
78	Structural details of monoclonal antibody m971 recognition of the membrane-proximal domain of CD22. Journal of Biological Chemistry, 2021, 297, 100966.	1.6	7
79	B cell targeting by molecular adjuvants for enhanced immunogenicity. Expert Review of Vaccines, 2020, 19, 1023-1039.	2.0	6
80	Structural basis of Plasmodium vivax inhibition by antibodies binding to the circumsporozoite protein repeats. ELife, 2022, 11, .	2.8	5
81	Toward a Carbohydrate-Based HIV-1 Vaccine. ACS Symposium Series, 2012, , 187-215.	0.5	3
82	Key Residues at Third CDR3β Position Impact Structure and Antigen Recognition of Human Invariant NK TCRs. Journal of Immunology, 2017, 198, 1056-1065.	0.4	3
83	Systematic Engineering of Optimized Autonomous Heavy-Chain Variable Domains. Journal of Molecular Biology, 2021, 433, 167241.	2.0	3
84	EspP, an Extracellular Serine Protease from Enterohemorrhagic E. coli, Reduces Coagulation Factor Activities, Reduces Clot Strength, and Promotes Clot Lysis. PLoS ONE, 2016, 11, e0149830.	1.1	2
85	Characterization of Glycoproteins with the Immunoglobulin Fold by X-Ray Crystallography and Biophysical Techniques. Journal of Visualized Experiments, 2018, , .	0.2	2
86	Structural Characterization of Endogenous Tuberous Sclerosis Protein Complex Revealed Potential Polymeric Assembly. Biochemistry, 2021, 60, 1808-1821.	1.2	1
87	Focal accumulation of aromaticity at the CDRH3 loop mitigates 4E10 polyreactivity without altering its HIV neutralization profile. IScience, 2021, 24, 102987.	1.9	1
88	Origins of a Vaccine-Induced, Human Anti-HIV-1 Antibody. EBioMedicine, 2015, 2, 632-633.	2.7	0
89	A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. FASEB Journal, 2012, 26, lb263.	0.2	0