Chuanhui Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1245762/publications.pdf

Version: 2024-02-01

		304602	395590
55	1,288	22	33
papers	citations	h-index	g-index
55	55	55	1173
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent advances on proteinâ€based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1934-1968.	5.9	105
2	Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process. Food Chemistry, 2017, 237, 98-105.	4.2	83
3	Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions. International Journal of Biological Macromolecules, 2020, 149, 617-626.	3.6	71
4	Isolation and structural characterization of a polysaccharide from fruits of Zizyphus jujuba cv. Junzao. International Journal of Biological Macromolecules, 2013, 55, 83-87.	3.6	62
5	Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chemistry, 2022, 368, 130848.	4.2	62
6	Effects of Initial Moisture Content on the Oil Absorption Behavior of Potato Chips During Frying Process. Food and Bioprocess Technology, 2016, 9, 331-340.	2.6	48
7	Effect of Drying Methods on the Microstructure, Bioactivity Substances, and Antityrosinase Activity of <i>Asparagus</i> Stems. Journal of Agricultural and Food Chemistry, 2019, 67, 1537-1545.	2.4	44
8	Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 208-215.	2.4	42
9	Composition and antioxidant activity of polysaccharides from jujuba by classical and ultrasound extraction. International Journal of Biological Macromolecules, 2014, 63, 150-153.	3.6	41
10	Inactivation of Lipase and Lipoxygenase of Wheat Germ with Temperature-Controlled Short Wave Infrared Radiation and Its Effect on Storage Stability and Quality of Wheat Germ Oil. PLoS ONE, 2016, 11, e0167330.	1.1	39
11	A Quick Method for Determining Total Polar Compounds of Frying Oils Using Electric Conductivity. Food Analytical Methods, 2016, 9, 1444-1450.	1.3	38
12	Effects of ultrasonic conditions on the interfacial property and emulsifying property of cellulose nanoparticles from ginkgo seed shells. Ultrasonics Sonochemistry, 2021, 70, 105335.	3.8	38
13	Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS. Food Chemistry, 2017, 221, 1434-1441.	4.2	35
14	In vitro inhibitory effects of polyphenols from Tartary buckwheat on xanthine oxidase: Identification, inhibitory activity, and action mechanism. Food Chemistry, 2022, 379, 132100.	4.2	33
15	Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 5237-5246.	2.4	29
16	Modulation of the structural and functional properties of perilla protein isolate from oilseed residues by dynamic high-pressure microfluidization. Food Chemistry, 2021, 365, 130497.	4.2	29
17	Comparison of different polar compounds-induced cytotoxicity in human hepatocellular carcinoma HepG2 cells. Lipids in Health and Disease, 2016, 15, 30.	1.2	28
18	Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries. International Journal of Molecular Sciences, 2017, 18, 2700.	1.8	26

#	Article	IF	CITATIONS
19	Development and Validation of a QuEChERS-LC-MS/MS Method for the Analysis of Phenolic Compounds in Rapeseed Oil. Journal of Agricultural and Food Chemistry, 2019, 67, 4105-4112.	2.4	26
20	Prebiotic carbohydrates: Effect on physicochemical stability and solubility of algal oil nanoparticles. Carbohydrate Polymers, 2020, 228, 115372.	5.1	24
21	A novel process for asparagus polyphenols utilization by ultrasound assisted adsorption and desorption using resins. Ultrasonics Sonochemistry, 2020, 63, 104920.	3.8	24
22	Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: A review. Food Chemistry, 2022, 380, 131838.	4.2	24
23	Volatile components of deep-fried soybean oil as indicator indices of lipid oxidation and quality degradation. European Food Research and Technology, 2020, 246, 1183-1192.	1.6	23
24	Effect of oil surface activity on oil absorption behavior of potato strips during frying process. Food Chemistry, 2021, 365, 130427.	4.2	23
25	Supercritical CO2 Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its Antioxidant Ability. Molecules, 2019, 24, 911.	1.7	20
26	Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Critical Reviews in Food Science and Nutrition, 2023, 63, 1406-1436.	5.4	20
27	Solubility and emulsifying properties of perilla protein isolate: Improvement by phosphorylation in the presence of sodium tripolyphosphate and sodium trimetaphosphate. Food Chemistry, 2022, 382, 132252.	4.2	18
28	Flos Sophorae Immaturus: Phytochemistry, bioactivities, and its potential applications. Food Reviews International, 2023, 39, 3185-3203.	4.3	18
29	New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing. Critical Reviews in Food Science and Nutrition, 2023, 63, 1564-1586.	5.4	16
30	Identification of α-Tocopherol and Its Oxidation Products by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 669-677.	2.4	15
31	Study on combined heat pump drying with freezeâ€drying of Antarctic krill and its effects on the lipids. Journal of Food Process Engineering, 2017, 40, e12577.	1.5	14
32	The Composition Analysis of Maca (<i>Lepidium meyenii</i> Walp.) from Xinjiang and Its Antifatigue Activity. Journal of Food Quality, 2017, 2017, 1-7.	1.4	14
33	Enhancing drying efficiency and quality of seed-used pumpkin using ultrasound, freeze-thawing and blanching pretreatments. Food Chemistry, 2022, 384, 132496.	4.2	14
34	Effect of flameless catalytic infrared treatment on rancidity and bioactive compounds in wheat germ oil. RSC Advances, 2016, 6, 37265-37273.	1.7	12
35	Effects of antioxidants, proteins, and their combination on emulsion oxidation. Critical Reviews in Food Science and Nutrition, 2022, 62, 8137-8160.	5.4	11
36	Evaluation of the functional quality of rapeseed oil obtained by different extraction processes in a Sprague-Dawley rat model. Food and Function, 2019, 10, 6503-6516.	2.1	10

3

#	Article	IF	CITATIONS
37	Effects of epoxy stearic acid on lipid metabolism in HepG2 cells. Journal of Food Science, 2020, 85, 3644-3652.	1.5	10
38	Effect of infrared ray roasting on oxidation stability and flavor of virgin rapeseed oils. Journal of Food Science, 2021, 86, 2990-3000.	1.5	10
39	Quality changes in fresh-cut asparagus with ultrasonic-assisted washing combined with cinnamon essential oil fumigation. Postharvest Biology and Technology, 2022, 187, 111873.	2.9	10
40	Optimization of Extraction of Natural Pigment from Purple Sweet Potato by Response Surface Methodology and Its Stability. Journal of Chemistry, 2013, 2013, 1-5.	0.9	8
41	Lipid oxidation stability of ultraâ€highâ€temperature shortâ€time sterilization sporodermâ€broken pine pollen (UHTâ€PP) and ⁶⁰ Coâ€irradiation sterilization sporodermâ€broken pine pollen (⁶⁰ Coâ€PP). Journal of the Science of Food and Agriculture, 2019, 99, 675-684.	1.7	8
42	Comparative Study of the Oxidation Stability of High Oleic Oils and Palm Oil during Thermal Treatment. Journal of Oleo Science, 2020, 69, 573-584.	0.6	8
43	Moisture Sorption Thermodynamics of Camellia oleifera. Food Biophysics, 2012, 7, 163-172.	1.4	7
44	Bioanalytical insights into the association between eicosanoids and pathogenesis of hepatocellular carcinoma. Cancer and Metastasis Reviews, 2018, 37, 269-277.	2.7	7
45	Effects of polar compounds in fried palm oil on liver lipid metabolism in C57 mice. Journal of Food Science, 2020, 85, 1915-1923.	1.5	7
46	Reduction of oil absorption during frying. Lipid Technology, 2015, 27, 203-205.	0.3	5
47	Analysis and Detection of Edible Oil Oxidation. Lipid Technology, 2016, 28, 145-148.	0.3	5
48	Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil. Molecules, 2021, 26, 6717.	1.7	5
49	Effects of Initial Pore Diameter on the Oil Absorption Behavior of Potato Chips during Frying Process. Journal of Oleo Science, 2016, 65, 303-310.	0.6	4
50	Formation of Polar Compounds During Deepâ€fryingâ€"Determination by ¹ H NMR and ESR. European Journal of Lipid Science and Technology, 2020, 122, 1900363.	1.0	4
51	Deep learning in food science: An insight in evaluating Pickering emulsion properties by droplets classification and quantification via object detection algorithm. Advances in Colloid and Interface Science, 2022, 304, 102663.	7.0	4
52	Study on the antioxidative mechanism of tocopherol loaded ethyl cellulose particles in thermal-oxidized soybean oil. Carbohydrate Polymers, 2022, 276, 118734.	5.1	3
53	Flavor and compositional analysis of macadamia nuts during longâ€ŧerm storage. Journal of Food Processing and Preservation, 2022, 46, .	0.9	3
54	Shrinking core model for extraction of phenylpropanoid amides of 5â€hydroxytriptamine from safflower seed meal. International Journal of Food Science and Technology, 2012, 47, 1744-1749.	1.3	1

#	Article	IF	CITATIONS
55	Highâ€efficiency sample preparation approach to determine acrylamide levels in highâ€fat foods. Journal of Separation Science, 2016, 39, 2950-2954.	1.3	O