Mahdi Panahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1245572/publications.pdf

Version: 2024-02-01

		4831	11282
191	22,010	87	141
papers	citations	h-index	g-index
100	100	100	0122
198	198	198	9122
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Assessment of Gini-, entropy- and ratio-based classification trees for groundwater potential modelling and prediction. Geocarto International, 2022, 37, 3397-3415.	1.7	10
2	Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood. Geocarto International, 2022, 37, 5716-5741.	1.7	16
3	Debris flows modeling using geo-environmental factors: developing hybridized deep-learning algorithms. Geocarto International, 2022, 37, 5150-5173.	1.7	24
4	Toward the development of deep learning analyses for snow avalanche releases in mountain regions. Geocarto International, 2022, 37, 7855-7880.	1.7	36
5	Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates. Catena, 2022, 208, 105779.	2.2	34
6	Radon potential mapping in Jangsu-gun, South Korea using probabilistic and deep learning algorithms. Environmental Pollution, 2022, 292, 118385.	3.7	7
7	Spatial modeling of radon potential mapping using deep learning algorithms. Geocarto International, 2022, 37, 9560-9582.	1.7	7
8	Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides. Applied Soft Computing Journal, 2022, 116, 108254.	4.1	39
9	Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Journal of Environmental Management, 2022, 305, 114367.	3.8	82
10	Convolutional neural network and long short-term memory algorithms for groundwater potential mapping in Anseong, South Korea. Journal of Hydrology: Regional Studies, 2022, 39, 100990.	1.0	19
11	Mapping of landslide potential in Pyeongchang-gun, South Korea, using machine learning meta-based optimization algorithms. Egyptian Journal of Remote Sensing and Space Science, 2022, 25, 463-472.	1.1	7
12	Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping. Natural Hazards, 2022, 114, 1247-1283.	1.6	10
13	A country-wide assessment of Iran's land subsidence susceptibility using satellite-based InSAR and machine learning. Geocarto International, 2022, 37, 14065-14087.	1.7	4
14	Large-scale dynamic flood monitoring in an arid-zone floodplain using SAR data and hybrid machine-learning models. Journal of Hydrology, 2022, 611, 128001.	2.3	14
15	Landslide susceptibility mapping using deep learning models in Ardabil province, Iran. Stochastic Environmental Research and Risk Assessment, 2022, 36, 4287-4310.	1.9	8
16	Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geoscience Frontiers, 2021, 12, 93-107.	4.3	133
17	Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geoscience Frontiers, 2021, 12, 505-519.	4.3	212
18	Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of the Total Environment, 2021, 750, 141565.	3.9	126

#	Article	IF	Citations
19	An integrated approach of GIS and hybrid intelligence techniques applied for flood risk modeling. Journal of Environmental Planning and Management, 2021, 64, 485-516.	2.4	25
20	Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 2021, 12, 101100.	4.3	95
21	Deep learning neural networks for spatially explicit prediction of flash flood probability. Geoscience Frontiers, 2021, 12, 101076.	4.3	60
22	Risk assessment of confined unreinforced masonry buildings based on FEMA P-58 methodology: a case studyâ€"school buildings in Tehran. Bulletin of Earthquake Engineering, 2021, 19, 1079-1120.	2.3	8
23	An approach based on socio-politically optimized neural computing network for predicting shallow landslide susceptibility at tropical areas. Environmental Earth Sciences, 2021, 80, 1.	1.3	1
24	Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena, 2021, 199, 105114.	2.2	53
25	Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geoscience Frontiers, 2021, 12, 101104.	4.3	97
26	Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 2021, 35, 100825.	1.0	24
27	Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecological Indicators, 2021, 107790.	2.6	49
28	Application of Machine Learning Algorithms for Geogenic Radon Potential Mapping in Danyang-Gun, South Korea. Frontiers in Environmental Science, 2021, 9, .	1.5	7
29	Urban flood modeling using deep-learning approaches in Seoul, South Korea. Journal of Hydrology, 2021, 601, 126684.	2.3	65
30	Assessment of Urban Infrastructures Exposed to Flood Using Susceptibility Map and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1923-1937.	2.3	19
31	Hybrids of Support Vector Regression with Grey Wolf Optimizer and Firefly Algorithm for Spatial Prediction of Landslide Susceptibility. Remote Sensing, 2021, 13, 4966.	1.8	16
32	Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 2020, 17, 641-658.	2.7	294
33	Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia. Science of the Total Environment, 2020, 699, 134230.	3.9	103
34	A Novel Application of League Championship Optimization (LCA): Hybridizing Fuzzy Logic for Soil Compression Coefficient Analysis. Applied Sciences (Switzerland), 2020, 10, 67.	1.3	9
35	Effects of Inter-Basin Water Transfer on Water Flow Condition of Destination Basin. Sustainability, 2020, 12, 338.	1.6	19
36	Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 2020, 188, 104426.	2.2	249

3

#	Article	IF	CITATIONS
37	Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Science of the Total Environment, 2020, 712, 136492.	3.9	101
38	The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. Catena, 2020, 187, 104421.	2.2	81
39	Comparison of machine learning models for gully erosion susceptibility mapping. Geoscience Frontiers, 2020, 11, 1609-1620.	4.3	96
40	Capability and robustness of novel hybridized models used for drought hazard modeling in southeast Queensland, Australia. Science of the Total Environment, 2020, 718, 134656.	3.9	28
41	Novel Credal Decision Tree-Based Ensemble Approaches for Predicting the Landslide Susceptibility. Remote Sensing, 2020, 12, 3389.	1.8	41
42	Development of novel hybridized models for urban flood susceptibility mapping. Scientific Reports, 2020, 10, 12937.	1.6	68
43	A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 2020, 96, 103971.	4.3	29
44	New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping. Hydrological Sciences Journal, 2020, 65, 2816-2837.	1.2	46
45	Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. Journal of Hydrology, 2020, 591, 125552.	2.3	87
46	The Capacitated Location-Allocation Problem Using the VAOMP (Vector Assignment Ordered Median) Tj ETQqQ 2020, 10, 8505.	0 0 0 rgBT / 1.3	Overlock 10 T 9
47	Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology, 2020, 588, 125033.	2.3	188
48	Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Science of the Total Environment, 2020, 741, 139937.	3.9	113
49	Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. Journal of Hydrology, 2020, 585, 124808.	2.3	7 5
50	Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques. Catena, 2020, 190, 104545.	2.2	28
51	Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing, 2020, 12, 475.	1.8	121
52	Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmospheric Environment, 2020, 224, 117320.	1.9	39
53	Advanced Machine Learning and Big Data Analytics in Remote Sensing for Natural Hazards Management. Remote Sensing, 2020, 12, 301.	1.8	7
54	Bedload transport rate prediction: Application of novel hybrid data mining techniques. Journal of Hydrology, 2020, 585, 124774.	2.3	55

#	Article	IF	Citations
55	Spatial assessment of landslide risk using two novel integrations of neuro-fuzzy system and metaheuristic approaches; Ardabil Province, Iran. Geomatics, Natural Hazards and Risk, 2020, 11 , $230-258$.	2.0	12
56	Mapping of Post-Wildfire Burned Area Using a Hybrid Algorithm and Satellite Data: The Case of the Camp Fire Wildfire in California, USA. Remote Sensing, 2020, 12, 623.	1.8	33
57	A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers. Sustainability, 2020, 12, 1063.	1.6	22
58	Shuffled Frog Leaping Algorithm and Wind-Driven Optimization Technique Modified with Multilayer Perceptron. Applied Sciences (Switzerland), 2020, 10, 689.	1.3	10
59	A methodological comparison of head-cut based gully erosion susceptibility models: Combined use of statistical and artificial intelligence. Geomorphology, 2020, 359, 107136.	1.1	32
60	Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength. Measurement: Journal of the International Measurement Confederation, 2020, 156, 107576.	2.5	31
61	A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial NaÃve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping. Water (Switzerland), 2020, 12, 239.	1.2	85
62	Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Science of the Total Environment, 2020, 715, 136836.	3.9	58
63	Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. Journal of Environmental Management, 2020, 260, 109867.	3.8	103
64	Gully Head-Cut Distribution Modeling Using Machine Learning Methods—A Case Study of N.W. Iran. Water (Switzerland), 2020, 12, 16.	1.2	30
65	Hybrid Computational Intelligence Models for Improvement Gully Erosion Assessment. Remote Sensing, 2020, 12, 140.	1.8	33
66	Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. Catena, 2020, 188, 104458.	2.2	96
67	A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. International Journal of Digital Earth, 2020, 13, 1408-1429.	1.6	70
68	A New Modeling Approach for Spatial Prediction of Flash Flood with Biogeography Optimized CHAID Tree Ensemble and Remote Sensing Data. Remote Sensing, 2020, 12, 1373.	1.8	32
69	Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. Journal of Hydrology, 2020, 587, 125007.	2.3	88
70	Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 2020, 590, 125423.	2.3	89
71	A Novel GIS-Based Random Forest Machine Algorithm for the Spatial Prediction of Shallow Landslide Susceptibility. Forests, 2020, 11, 118.	0.9	54
72	A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment. Geocarto International, 2019, 34, 1427-1457.	1.7	105

#	Article	IF	Citations
73	Harris Hawks Optimization: A Novel Swarm Intelligence Technique for Spatial Assessment of Landslide Susceptibility. Sensors, 2019, 19, 3590.	2.1	111
74	Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction. Applied Sciences (Switzerland), 2019, 9, 2824.	1.3	58
75	Multi-hazard probability assessment and mapping in Iran. Science of the Total Environment, 2019, 692, 556-571.	3.9	119
76	Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Science of the Total Environment, 2019, 691, 1098-1118.	3.9	99
77	Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility. Science of the Total Environment, 2019, 688, 903-916.	3.9	91
78	Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Science of the Total Environment, 2019, 688, 855-866.	3.9	155
79	Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 2019, 247, 712-729.	3.8	169
80	The Feasibility of Three Prediction Techniques of the Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System, and Hybrid Particle Swarm Optimization for Assessing the Safety Factor of Cohesive Slopes. ISPRS International Journal of Geo-Information, 2019, 8, 391.	1.4	73
81	Novel Nature-Inspired Hybrids of Neural Computing for Estimating Soil Shear Strength. Applied Sciences (Switzerland), 2019, 9, 4643.	1.3	26
82	Slope Stability Monitoring Using Novel Remote Sensing Based Fuzzy Logic. Sensors, 2019, 19, 4636.	2.1	21
83	Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles. Sensors, 2019, 19, 4698.	2.1	29
84	A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water (Switzerland), 2019, 11, 2013.	1.2	64
85	New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 2019, 10, 743.	0.9	89
86	SEVUCAS: A Novel GIS-Based Machine Learning Software for Seismic Vulnerability Assessment. Applied Sciences (Switzerland), 2019, 9, 3495.	1.3	42
87	Spatial prediction of shallow landslide using Bat algorithm optimized machine learning approach: A case study in Lang Son Province, Vietnam. Advanced Engineering Informatics, 2019, 42, 100978.	4.0	37
88	A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environmental Earth Sciences, 2019, 78, 1.	1.3	60
89	Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences (Switzerland), 2019, 9, 3755.	1.3	129
90	Multi-hazards vulnerability assessment of southern coasts of Iran. Journal of Environmental Management, 2019, 252, 109628.	3.8	40

#	Article	IF	CITATIONS
91	Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. Journal of Environmental Management, 2019, 243, 358-369.	3.8	69
92	A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 2019, 19, 2444.	2.1	86
93	Hybrid computational intelligence models for groundwater potential mapping. Catena, 2019, 182, 104101.	2.2	110
94	An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping. Remote Sensing, 2019, 11, 1375.	1.8	20
95	Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of the Total Environment, 2019, 679, 172-184.	3.9	128
96	A new intelligence approach based on GIS-based Multivariate Adaptive Regression Splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. Journal of Hydrology, 2019, 575, 314-326.	2.3	76
97	Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm. Remote Sensing, 2019, 11, 931.	1.8	90
98	A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena, 2019, 179, 184-196.	2.2	214
99	Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 2019, 178, 172-188.	2.2	107
100	Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. Journal of Hydrology, 2019, 572, 435-448.	2.3	150
101	Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 2019, 668, 1038-1054.	3.9	195
102	Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics. Remote Sensing, 2019, 11, 618.	1.8	52
103	Land subsidence modelling using tree-based machine learning algorithms. Science of the Total Environment, 2019, 672, 239-252.	3.9	99
104	PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Science of the Total Environment, 2019, 664, 296-311.	3.9	84
105	Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests, 2019, 10, 157.	0.9	136
106	GIS-Based SWARA and Its Ensemble by RBF and ICA Data-Mining Techniques for Determining Suitability of Existing Schools and Site Selection of New School Buildings. , 2019, , 161-188.		4
107	Spotted Hyena Optimizer and Ant Lion Optimization in Predicting the Shear Strength of Soil. Applied Sciences (Switzerland), 2019, 9, 4738.	1.3	26
108	Spatial Modeling of Snow Avalanche Using Machine Learning Models and Geo-Environmental Factors: Comparison of Effectiveness in Two Mountain Regions. Remote Sensing, 2019, 11, 2995.	1.8	44

#	Article	IF	CITATIONS
109	A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping. Sustainability, 2019, 11, 6323.	1.6	37
110	Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Applied Sciences (Switzerland), 2019, 9, 4715.	1.3	55
111	Application of Probabilistic and Machine Learning Models for Groundwater Potentiality Mapping in Damghan Sedimentary Plain, Iran. Remote Sensing, 2019, 11, 3015.	1.8	46
112	Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis. Geomatics, Natural Hazards and Risk, 2019, 10, 2429-2453.	2.0	16
113	A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Engineering With Computers, 2019, 35, 955-965.	3.5	53
114	Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena, 2019, 172, 212-231.	2.2	210
115	A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoretical and Applied Climatology, 2019, 137, 637-653.	1.3	119
116	Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 2019, 175, 203-218.	2.2	229
117	A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sensing, 2019, 11, 62.	1.8	110
118	Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 2019, 96, 173-212.	1.6	94
119	Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena, 2019, 175, 430-445.	2.2	199
120	Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology, 2019, 266-267, 198-207.	1.9	194
121	A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena, 2019, 173, 302-311.	2.2	143
122	Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bulletin of Engineering Geology and the Environment, 2019, 78, 247-266.	1.6	122
123	A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 2865-2886.	1.6	163
124	GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 2018, 164, 135-149.	2.2	207
125	Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: a case study in Vietnam. Natural Hazards, 2018, 92, 1871-1887.	1.6	27
126	GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of the Total Environment, 2018, 634, 853-867.	3.9	245

#	Article	IF	CITATIONS
127	Prediction of shear strength of soft soil using machine learning methods. Catena, 2018, 166, 181-191.	2.2	146
128	Bagging based Support Vector Machines for spatial prediction of landslides. Environmental Earth Sciences, 2018, 77, 1.	1.3	97
129	A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627, 744-755.	3.9	494
130	Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 2018, 163, 399-413.	2.2	367
131	A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Computing and Applications, 2018, 29, 1495-1506.	3.2	86
132	Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the Total Environment, 2018, 621, 1124-1141.	3.9	298
133	A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 2018, 33, 157-170.	1.8	131
134	Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees. Geomorphology, 2018, 303, 256-270.	1.1	180
135	Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors, 2018, 18, 3777.	2.1	146
136	Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing, 2018, 10, 1527.	1.8	121
137	Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran. Sustainability, 2018, 10, 3376.	1.6	78
138	Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network. Advanced Engineering Informatics, 2018, 38, 593-604.	4.0	117
139	A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides. Remote Sensing, 2018, 10, 1538.	1.8	84
140	Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. Scientific Reports, 2018, 8, 15364.	1.6	124
141	A Novel Hybrid Swarm Optimized Multilayer Neural Network for Spatial Prediction of Flash Floods in Tropical Areas Using Sentinel-1 SAR Imagery and Geospatial Data. Sensors, 2018, 18, 3704.	2.1	101
142	New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water (Switzerland), 2018, 10, 1210.	1.2	174
143	Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrology and Earth System Sciences, 2018, 22, 4771-4792.	1.9	122
144	Enhancing Prediction Performance of Landslide Susceptibility Model Using Hybrid Machine Learning Approach of Bagging Ensemble and Logistic Model Tree. Applied Sciences (Switzerland), 2018, 8, 1046.	1.3	85

#	Article	IF	CITATIONS
145	GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecological Informatics, 2018, 48, 104-116.	2.3	63
146	Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 2018, 18, 2464.	2.1	120
147	Spatial Prediction of Rainfall-Induced Landslides Using Aggregating One-Dependence Estimators Classifier. Journal of the Indian Society of Remote Sensing, 2018, 46, 1457-1470.	1.2	69
148	Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches. Journal of Hydrology, 2018, 565, 248-261.	2.3	129
149	A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 2018, 642, 1032-1049.	3.9	151
150	Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naÃ-ve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 2017, 128, 255-273.	1.3	264
151	Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides, 2017, 14, 447-458.	2.7	207
152	A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides, 2017, 14, 1-17.	2.7	103
153	Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 2017, 76, 1.	1.3	211
154	A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environmental Earth Sciences, 2017, 76, 1.	1.3	72
155	Landslide Susceptibility Assessment Using Bagging Ensemble Based Alternating Decision Trees, Logistic Regression and J48 Decision Trees Methods: A Comparative Study. Geotechnical and Geological Engineering, 2017, 35, 2597-2611.	0.8	101
156	A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena, 2017, 157, 213-226.	2.2	104
157	Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 2017, 157, 310-324.	2.2	267
158	Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and) Tj ETQq0 Environmental Earth Sciences, 2017, 76, 1.	0 0 rgBT / 1.3	Overlock 10 67
159	A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 2017, 151, 147-160.	2.2	637
160	A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environmental Earth Sciences, 2017, 76, 1.	1.3	105
161	Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 2017, 297, 69-85.	1.1	215
162	A novel ensemble classifier of rotation forest and $Na\tilde{A}^{-}ve$ Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomatics, Natural Hazards and Risk, 2017, 8, 649-671.	2.0	81

#	Article	IF	CITATIONS
163	A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling and Software, 2017, 95, 229-245.	1.9	416
164	A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 2017, 233, 32-44.	1.9	287
165	Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China). Geomatics, Natural Hazards and Risk, 2017, 8, 544-569.	2.0	100
166	Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 2017, 149, 52-63.	2.2	467
167	A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS. Sustainability, 2017, 9, 813.	1.6	30
168	A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKdaÂV1.1) for spatial prediction of floods. Geoscientific Model Development, 2017, 10, $3391-3409$.	1.3	57
169	Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sensing, 2016, 8, 347.	1.8	121
170	Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam. International Journal of Digital Earth, 2016, 9, 1077-1097.	1.6	117
171	Groutability estimation of grouting processes with cement grouts using Differential Flower Pollination Optimized Support Vector Machine. Applied Soft Computing Journal, 2016, 45, 173-186.	4.1	67
172	Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. Environmental Earth Sciences, 2016, 75, 1.	1.3	43
173	GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environmental Earth Sciences, 2016, 75, 1.	1.3	215
174	A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling and Software, 2016, 84, 240-250.	1.9	377
175	Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 2016, 540, 317-330.	2.3	275
176	Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 2016, 13, 361-378.	2.7	865
177	Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Natural Hazards, 2016, 83, 97-127.	1.6	116
178	A Comparative Study of Least Square Support Vector Machines and Multiclass Alternating Decision Trees for Spatial Prediction of Rainfall-Induced Landslides in a Tropical Cyclones Area. Geotechnical and Geological Engineering, 2016, 34, 1807-1824.	0.8	110
179	A Novel Relevance Vector Machine Classifier with Cuckoo Search Optimization for Spatial Prediction of Landslides. Journal of Computing in Civil Engineering, 2016, 30, .	2.5	50
180	Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Sciences, 2016, 75, 1.	1.3	103

#	ARTICLE	IF	CITATIONS
181	GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques. Natural Hazards and Earth System Sciences, 2015, 15, 461-474.	1.5	56
182	Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 2015, 133, 266-281.	2.2	349
183	A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 2015, 52, 394-403.	2.6	582
184	A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics, Natural Hazards and Risk, 2015, 6, 243-271.	2.0	86
185	Seismic vulnerability assessment of school buildings in Tehran city based on AHP and GIS. Natural Hazards and Earth System Sciences, 2014, 14, 969-979.	1.5	56
186	Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and NaÃ-ve Bayes Models. Mathematical Problems in Engineering, 2012, 2012, 1-26.	0.6	369
187	Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers and Geosciences, 2012, 45, 199-211.	2.0	310
188	Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, 2012, 96, 28-40.	2.2	330
189	Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology, 2012, 171-172, 12-29.	1.1	166
190	Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 2011, 59, 1413-1444.	1.6	297
191	Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto International, 0, , 1-16.	1.7	105