Juan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/124547/publications.pdf

Version: 2024-02-01

38	919	17 h-index	29
papers	citations		g-index
38	38	38	1101 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Stable Jâ€Aggregation of an azaâ€BODIPYâ€Lipid in a Liposome for Optical Cancer Imaging. Angewandte Chemie - International Edition, 2019, 58, 13394-13399.	13.8	113
2	Characterization and strengthening effects of $\hat{1}^3\hat{a}\in^2$ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt.%) alloy. Materials Characterization, 2017, 126, 1-9.	4.4	102
3	Effects of Zr and Mn additions on formation of LPSO structure and dynamic recrystallization behavior of Mg-15Gd-1Zn alloy. Journal of Alloys and Compounds, 2017, 692, 805-816.	5 . 5	61
4	Double-sided friction-stir welding of magnesium alloy with concave–convex tools for texture control. Materials & Design, 2015, 76, 181-189.	5.1	49
5	Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study. Bioactive Materials, 2022, 8, 140-152.	15.6	47
6	Microstructure, texture and mechanical properties of friction stir processed Mg-14Gd alloys. Materials and Design, 2017, 130, 90-102.	7.0	46
7	A Nanoemulsion with A Porphyrin Shell for Cancer Theranostics. Angewandte Chemie - International Edition, 2019, 58, 14974-14978.	13.8	44
8	Tailoring Porphyrin Conjugation for Nanoassembly-Driven Phototheranostic Properties. ACS Nano, 2019, 13, 4560-4571.	14.6	41
9	Optimization of mechanical properties of fine-grained non-combustive magnesium alloy joint by asymmetrical double-sided friction stir welding. Journal of Materials Processing Technology, 2017, 242, 117-125.	6.3	34
10	Porphyrin-lipid stabilized paclitaxel nanoemulsion for combined photodynamic therapy and chemotherapy. Journal of Nanobiotechnology, 2021, 19, 154.	9.1	34
11	Subtherapeutic Photodynamic Treatment Facilitates Tumor Nanomedicine Delivery and Overcomes Desmoplasia. Nano Letters, 2021, 21, 344-352.	9.1	28
12	Influence of processing parameters on thermal field in Mg–Nd–Zn–Zr alloy during friction stir processing. Materials and Design, 2016, 94, 186-194.	7.0	27
13	Photophysics of J-Aggregating Porphyrin-Lipid Photosensitizers in Liposomes: Impact of Lipid Saturation. Langmuir, 2020, 36, 5385-5393.	3. 5	27
14	Tuning Pharmacokinetics to Improve Tumor Accumulation of a Prostate-Specific Membrane Antigen-Targeted Phototheranostic Agent. Bioconjugate Chemistry, 2018, 29, 3746-3756.	3.6	26
15	Multipronged Biomimetic Approach To Create Optically Tunable Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 8125-8129.	13.8	24
16	Porphyrin–High-Density Lipoprotein: A Novel Photosensitizing Nanoparticle for Lung Cancer Therapy. Annals of Thoracic Surgery, 2019, 107, 369-377.	1.3	21
17	Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study. Journal of Biomedical Optics, 2016, 21, 084002.	2.6	20
18	Use of Porphysomes to detect primary tumour, lymph node metastases, intra-abdominal metastases and as a tool for image-guided lymphadenectomy: proof of concept in endometrial cancer. Theranostics, 2019, 9, 2727-2738.	10.0	19

#	Article	IF	CITATIONS
19	Porphyrin-lipid nanovesicles (Porphysomes) are effective photosensitizers for photodynamic therapy. Nanophotonics, 2021, 10, 3161-3168.	6.0	18
20	Longâ€Circulating Prostateâ€Specific Membrane Antigenâ€Targeted NIR Phototheranostic Agent. Photochemistry and Photobiology, 2020, 96, 718-724.	2.5	14
21	Photodynamic therapy enables tumor-specific ablation in preclinical models of thyroid cancer. Endocrine-Related Cancer, 2020, 27, 41-53.	3.1	12
22	Improved optical properties of switchable mirrors based on Pd/Mg-TiO2 films fabricated by magnetron sputtering. Materials and Design, 2018, 144, 256-262.	7.0	11
23	Nanostructureâ€Dependent Ratiometric NIR Fluorescence Enabled by Ordered Dye Aggregation. ChemNanoMat, 2016, 2, 430-436.	2.8	10
24	Fabrication and optical property improvement of gasochromic switchable mirror based on Pd/Mg Nb2O5 thin film. International Journal of Hydrogen Energy, 2019, 44, 15205-15217.	7.1	10
25	Evaluation of Novel Imaging Devices for Nanoparticle-Mediated Fluorescence-Guided Lung Tumor Therapy. Annals of Thoracic Surgery, 2019, 107, 1613-1620.	1.3	10
26	Lipoproteinâ€Like Nanoparticle Carrying Small Interfering RNA Against Spaltâ€Like Transcription Factor 4 Effectively Targets Hepatocellular Carcinoma Cells and Decreases Tumor Burden. Hepatology Communications, 2020, 4, 769-782.	4.3	9
27	Structure Design and Performance Research of WO ₃ Hydrogen Gasochromic Film Prepared by Solvothermal Synthesis Assisted with Electrodeposition of Seed Layer. Advanced Materials Interfaces, 2022, 9, .	3.7	9
28	Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma. International Journal of Oncology, 2018, 53, 2034-2046.	3.3	8
29	Mixed and Matched Metalloâ€Nanotexaphyrin for Customizable Biomedical Imaging. Advanced Healthcare Materials, 2019, 8, 1800857.	7.6	8
30	The Ductility Variation of High-Pressure Die-Cast AE44 Alloy: The Role of Inhomogeneous Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2274-2286.	2.2	8
31	Synthesis and Development of Lipoproteinâ∈Based Nanocarriers for Lightâ∈Activated Theranostics. Israel Journal of Chemistry, 2012, 52, 715-727.	2.3	6
32	Influence of friction stir processing and aging heat treatment on microstructure and mechanical properties of selective laser melted Mg-Gd-Zr alloy. Additive Manufacturing, 2021, 44, 102036.	3.0	6
33	Optical H2-sensing properties of ordered porous WO3 films prepared by colloidal template method. Journal of Materials Science: Materials in Electronics, 2022, 33, 1604-1617.	2.2	6
34	<i>In Vivo</i> Potential of Manganese Chelated Porphysomes as MRI Contrast Agents. STEM Fellowship Journal, 2017, 3, 47-53.	0.3	5
35	pH Driven self-assembly of aza-BODIPY J-aggregates. Journal of Porphyrins and Phthalocyanines, 2019, 23, 518-525.	0.8	5
36	Rabbit VX2 head and neck squamous cell models for translational head and neck theranostic technology development. Clinical and Translational Medicine, 2021, 11, e550.	4.0	1

#	Article	IF	CITATIONS
37	Effects of Amorphous and Nanocrystalline Structures on Hydrogen-Induced Optical Performance of Modulated Mg–Gd Films with Various Composition Fluctuations. ACS Applied Materials & Interfaces, 2020, 12, 29605-29613.	8.0	O
38	Hydrogen-induced optical properties of FC/Pd/Mg films: Roles of grain size and grain boundary. Journal of Magnesium and Alloys, 2023, 11, 1970-1980.	11.9	0