Mingjie Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1245357/publications.pdf

Version: 2024-02-01

257101 344852 46 1,388 24 36 citations h-index g-index papers 46 46 46 1622 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fast Desalination by Multilayered Covalent Organic Framework (COF) Nanosheets. ACS Applied Materials & Desamp; Interfaces, 2019, 11, 16847-16854.	4.0	135
2	Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: Beyond surface segregation. Journal of Membrane Science, 2016, 505, 53-60.	4.1	84
3	Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. Journal of Membrane Science, 2020, 604, 118090.	4.1	79
4	Advanced ultrafiltration membranes by leveraging microphase separation in macrophase separation of amphiphilic polysulfone block copolymers. Journal of Membrane Science, 2017, 525, 342-348.	4.1	64
5	How Pore Hydrophilicity Influences Water Permeability?. Research, 2019, 2019, 2581241.	2.8	61
6	Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001). Fluid Phase Equilibria, 2011, 302, 316-320.	1.4	59
7	Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations. Journal of Membrane Science, 2020, 604, 118087.	4.1	58
8	Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination. Journal of Membrane Science, 2017, 528, 95-102.	4.1	47
9	Resistance of water transport in carbon nanotube membranes. Nanoscale, 2018, 10, 13242-13249.	2.8	45
10	Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance. Chemical Communications, 2012, 48, 11525.	2.2	43
11	lon Rejection in Covalent Organic Frameworks: Revealing the Overlooked Effect of In-Pore Transport. ACS Applied Materials & Damp; Interfaces, 2019, 11, 45246-45255.	4.0	40
12	How Pore Hydrophilicity Influences Water Permeability?. Research, 2019, 2019, 1-10.	2.8	39
13	Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes. Chinese Journal of Chemical Engineering, 2017, 25, 1676-1684.	1.7	38
14	Water Flow inside Polamide Reverse Osmosis Membranes: A Non-Equilibrium Molecular Dynamics Study. Journal of Physical Chemistry B, 2017, 121, 1715-1722.	1.2	37
15	Atomic-layer-deposition-enabled thin-film composite membranes of polyimide supported on nanoporous anodized alumina. Journal of Membrane Science, 2017, 535, 56-62.	4.1	37
16	Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube. Fluid Phase Equilibria, 2010, 297, 215-220.	1.4	36
17	Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2012, 14, 16536.	1.3	34
18	Robust GQDs Modified Thermally Reduced Graphene Oxide Membranes for Ultrafast and Longâ€Term Purification of Dyeâ€Wasted Water. Advanced Materials Interfaces, 2017, 4, 1700209.	1.9	33

#	Article	IF	CITATIONS
19	Water Flow through Interlayer Channels of Two-Dimensional Materials with Various Hydrophilicities. Journal of Physical Chemistry C, 2018, 122, 15772-15779.	1.5	30
20	Effect of hydrophilicity on water transport through sub-nanometer pores. Journal of Membrane Science, 2020, 611, 118297.	4.1	28
21	Homoporous Membranes with Tailored Pores by Soaking Block Copolymer/Homopolymer Blends in Selective Solvents: Dissolution versus Swelling. Macromolecules, 2016, 49, 215-223.	2.2	27
22	Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. Small, 2020, 16, e1903879.	5.2	27
23	Molecular Dynamics Study of Pore Inner Wall Modification Effect in Structure of Water Molecules Confined in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 882-889.	1.5	25
24	Thickness-dependent ion rejection in nanopores. Journal of Membrane Science, 2020, 601, 117899.	4.1	25
25	Boron removal by water molecules inside covalent organic framework (COF) multilayers. Desalination, 2022, 526, 115548.	4.0	22
26	Theoretical Study of Hydration Effects on the Selectivity of 18-Crown-6 Between K+ and Na+. Chinese Journal of Chemical Engineering, 2011, 19, 212-216.	1.7	21
27	Effect of hydrophilicity on ion rejection of sub-nanometer pores. Separation and Purification Technology, 2021, 257, 117937.	3.9	21
28	Design of gradient nanopores in phenolics for ultrafast water permeation. Chemical Science, 2019, 10, 2093-2100.	3.7	20
29	Pressure-Dependent Ion Rejection in Nanopores. Journal of Physical Chemistry C, 2020, 124, 20498-20505.	1.5	20
30	Molecular Simulations of Water Transport Resistance in Polyamide RO Membranes: Interfacial and Interior Contributions. Engineering, 2020, 6, 577-584.	3.2	19
31	Molecular dynamics simulations on the water flux in different two-dimension materials. Molecular Simulation, 2020, 46, 689-698.	0.9	16
32	Three-Dimensional Covalent Organic Framework Membranes: Synthesis by Oligomer Interfacial Ripening and Application in Precise Separations. Macromolecules, 2022, 55, 3259-3266.	2.2	16
33	Transport mechanism of water molecules passing through polyamide/COF mixed matrix membranes. Physical Chemistry Chemical Physics, 2019, 21, 26591-26597.	1.3	15
34	Dissociation of methanol on hydroxylated TiO2-B (100) surface: Insights from first principle DFT calculation. Catalysis Today, 2011, 165, 32-40.	2.2	14
35	Designing sub-nanometer pores for efficient boron removal. Desalination, 2022, 533, 115755.	4.0	13
36	Nanomeshes with Sub-10 nm Pores by Glycerol-Triggered 2D Assembly in Liquid Phases for Fast and Selective Membranes. Nano Letters, 2021, 21, 3302-3309.	4.5	12

#	Article	IF	CITATIONS
37	Changes in CNT-confined water structural properties induced by the variation in water molecule orientation. Molecular Simulation, 2012, 38, 1094-1102.	0.9	11
38	Mechanism of permeance enhancement in mixed-matrix reverse osmosis membranes incorporated with graphene and its oxides. Separation and Purification Technology, 2021, 270, 118818.	3.9	10
39	An ultra-high sensitive ethanol sensor through amending surface-functionalized groups by novel acidic synthesis methods. Sensors and Actuators B: Chemical, 2021, 347, 130654.	4.0	7
40	Molecular Dynamics Simulation Study of Ionic Hydration in Negatively Charged Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 7620-7624.	0.9	6
41	High-Purity, High-Yield Synthesis of Covalent Organic Framework Nanosheets for Fast and Selective Molecular Separation. Chemistry of Materials, 2022, 34, 6345-6354.	3.2	5
42	Heat transfer of nanofluidics in hydrophilic pores: Insights from molecular dynamics simulations. Chinese Journal of Chemical Engineering, 2016, 24, 1117-1121.	1.7	4
43	Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching. Materials, 2015, 8, 3793-3805.	1.3	3
44	Molecular Simulation of Solute Hydration Structure in Nanoscale Confinement. Wuli Huaxue Xuebao/Acta Physico - Chimica Sinica, 2009, 25, 583-589.	2.2	2
45	Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes. Chinese Journal of Chemical Engineering, 2021, 31, 67-74.	1.7	0
46	Interference mechanism of cations on transport of lithium and magnesium inside COF nanofiltration membranes. Molecular Simulation, 2022, 48, 1369-1377.	0.9	0