
Yuanbao Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1245199/publications.pdf Version: 2024-02-01

YUANBAO LIN

#	Article	IF	CITATIONS
1	Over 18% ternary polymer solar cells enabled by a terpolymer as the third component. Nano Energy, 2022, 92, 106681.	16.0	97
2	Doping Approaches for Organic Semiconductors. Chemical Reviews, 2022, 122, 4420-4492.	47.7	153
3	Rapid and up-scalable manufacturing of gigahertz nanogap diodes. Nature Communications, 2022, 13, .	12.8	11
4	Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials, 2021, 20, 378-384.	27.5	257
5	Molecular doping of near-infrared organic photodetectors for photoplethysmogram sensors. Journal of Materials Chemistry C, 2021, 9, 3129-3135.	5.5	6
6	18.4 % Organic Solar Cells Using a High Ionization Energy Selfâ€Assembled Monolayer as Holeâ€Extraction Interlayer. ChemSusChem, 2021, 14, 3569-3578.	6.8	121
7	Using Two Compatible Donor Polymers Boosts the Efficiency of Ternary Organic Solar Cells to 17.7%. Chemistry of Materials, 2021, 33, 7254-7262.	6.7	35
8	Printed Memtransistor Utilizing a Hybrid Perovskite/Organic Heterojunction Channel. ACS Applied Materials & Interfaces, 2021, 13, 51592-51601.	8.0	9
9	Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells. Journal of Materials Chemistry A, 2020, 8, 1164-1175.	10.3	39
10	Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications, 2020, 11, 5220.	12.8	204
11	Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy and Environmental Science, 2020, 13, 5017-5027.	30.8	170
12	Efficient Double- and Triple-Junction Nonfullerene Organic Photovoltaics and Design Guidelines for Optimal Cell Performance. ACS Energy Letters, 2020, 5, 3692-3701.	17.4	15
13	A Simple n-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%. ACS Energy Letters, 2020, 5, 3663-3671.	17.4	253
14	Self-Assembled Monolayer Enables Hole Transport Layer-Free Organic Solar Cells with 18% Efficiency and Improved Operational Stability. ACS Energy Letters, 2020, 5, 2935-2944.	17.4	425
15	Lowâ€Voltage Heterojunction Metal Oxide Transistors via Rapid Photonic Processing. Advanced Electronic Materials, 2020, 6, 2000028.	5.1	25
16	Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors. ACS Applied Materials & Interfaces, 2020, 12, 31591-31600.	8.0	16
17	Liquid phase exfoliation of MoS ₂ and WS ₂ in aqueous ammonia and their application in highly efficient organic solar cells. Journal of Materials Chemistry C, 2020, 8, 5259-5264.	5.5	109
18	A Highly Conductive Titanium Oxynitride Electronâ€6elective Contact for Efficient Photovoltaic Devices. Advanced Materials, 2020, 32, e2002608.	21.0	46

Yuanbao Lin

#	Article	IF	CITATIONS
19	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798.	17.4	208
20	17.1% Efficient Singleâ€Junction Organic Solar Cells Enabled by nâ€Type Doping of the Bulkâ€Heterojunction. Advanced Science, 2020, 7, 1903419.	11.2	173
21	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	39.5	894
22	Stretchable and Transparent Conductive PEDOT:PSSâ€Based Electrodes for Organic Photovoltaics and Strain Sensors Applications. Advanced Functional Materials, 2020, 30, 2001251.	14.9	88
23	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	24.0	222
24	17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS ₂ as a Replacement for PEDOT:PSS. Advanced Materials, 2019, 31, e1902965.	21.0	500
25	Use of the Phenâ€NaDPO:Sn(SCN) ₂ Blend as Electron Transport Layer Results to Consistent Efficiency Improvements in Organic and Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905810.	14.9	41
26	Oneâ€Step Bladeâ€Coated Highly Efficient Nonfullerene Organic Solar Cells with a Selfâ€Assembled Interfacial Layer Enabled by Solvent Vapor Annealing. Solar Rrl, 2019, 3, 1900179.	5.8	19
27	Manipulate Micrometer Surface and Nanometer Bulk Phase Separation Structures in the Active Layer of Organic Solar Cells via Synergy of Ultrasonic and High-Pressure Gas Spraying. ACS Applied Materials & Interfaces, 2019, 11, 10777-10784.	8.0	17
28	Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. Nano Energy, 2018, 46, 428-435.	16.0	45
29	Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Advanced Energy Materials, 2018, 8, 1701942.	19.5	99
30	Roll-to-Roll Slot-Die-Printed Polymer Solar Cells by Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 22485-22494.	8.0	27
31	Study of ITO-free roll-to-roll compatible polymer solar cells using the one-step doctor blading technique. Journal of Materials Chemistry A, 2017, 5, 4093-4102.	10.3	36
32	Polymer solar cells spray coated with non-halogenated solvents. Solar Energy Materials and Solar Cells, 2017, 161, 52-61.	6.2	27
33	Improved performance of deep-blue polymer light-emitting diodes by one-step coating self-assembly hole injection/transport nanocomposites with both the optical and electrical optimization. Organic Electronics, 2017, 45, 285-292.	2.6	8
34	Dual Function of UV/Ozone Plasma-Treated Polymer in Polymer/Metal Hybrid Electrodes and Semitransparent Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 44656-44666.	8.0	25
35	Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDOT:PSS layer. Journal of Materials Chemistry A, 2016, 4, 11821-11828.	10.3	53
36	Ultrafast Energy Transfer Triggers Ionization Energy Offset Dependence of Quantum Efficiency in Low-bandgap Non-fullerene Acceptor Solar Cells. , 0, , .		0

3

#	Article	IF	CITATIONS
37	Aqueous ammonia-based exfoliation of two dimensional MoS2 and WS2 and their application in non-fullerene organic solar cells. , 0, , .		0