Liqing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1244976/publications.pdf

Version: 2024-02-01

41 papers

4,133 citations

201674 27 h-index 315739 38 g-index

41 all docs

41 docs citations

times ranked

41

5752 citing authors

#	Article	IF	CITATIONS
1	Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Medicine, 2007, 13, 1299-1307.	30.7	835
2	Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metabolism, 2017, 25, 1282-1293.e7.	16.2	741
3	Histone Deacetylase 6 and Heat Shock Protein 90 Control the Functions of Foxp3 ⁺ T-Regulatory Cells. Molecular and Cellular Biology, 2011, 31, 2066-2078.	2.3	216
4	Essential role of mitochondrial energy metabolism in Foxp3 ⁺ Tâ€regulatory cell function and allograft survival. FASEB Journal, 2015, 29, 2315-2326.	0.5	213
5	Inhibition of HDAC9 Increases T Regulatory Cell Function and Prevents Colitis in Mice. Gastroenterology, 2010, 138, 583-594.	1.3	209
6	Sirtuin-1 Targeting Promotes Foxp3 ⁺ T-Regulatory Cell Function and Prolongs Allograft Survival. Molecular and Cellular Biology, 2011, 31, 1022-1029.	2.3	184
7	Histone Deacetylases 6 and 9 and Sirtuin-1 Control Foxp3 ⁺ Regulatory T Cell Function Through Shared and Isoform-Specific Mechanisms. Science Signaling, 2012, 5, ra45.	3.6	181
8	Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nature Medicine, 2013, 19, 1173-1177.	30.7	168
9	Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nature Reviews Drug Discovery, 2009, 8, 969-981.	46.4	163
10	Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Reports, 2020, 33, 108500.	6.4	135
11	B7-H3 promotes acute and chronic allograft rejection. European Journal of Immunology, 2005, 35, 428-438.	2.9	91
12	Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3 + T-regulatory Cell Function and Promotes Antitumor Immunity. EBioMedicine, 2016, 13, 99-112.	6.1	86
13	Using histone deacetylase inhibitors to enhance Foxp3 ⁺ regulatory Tâ€cell function and induce allograft tolerance. Immunology and Cell Biology, 2009, 87, 195-202.	2.3	81
14	Lymphatic impairment leads to pulmonary tertiary lymphoid organ formation and alveolar damage. Journal of Clinical Investigation, 2019, 129, 2514-2526.	8.2	81
15	FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3. Journal of Clinical Investigation, 2015, 125, 1111-1123.	8.2	76
16	Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood, 2013, 121, 3631-3639.	1.4	72
17	Programmed cell death 1 (PDâ€1) and its ligand PDâ€11 are required for allograft tolerance. European Journal of Immunology, 2007, 37, 2983-2990.	2.9	68
18	HDAC5 controls the functions of Foxp3 ⁺ Tâ€regulatory and CD8 ⁺ T cells. International Journal of Cancer, 2016, 138, 2477-2486.	5.1	67

#	Article	IF	Citations
19	Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Scientific Reports, 2017, 7, 8626.	3.3	64
20	HDAC10 deletion promotes Foxp3+ T-regulatory cell function. Scientific Reports, 2020, 10, 424.	3.3	42
21	Active site-targeted covalent irreversible inhibitors of USP7 impair the functions of Foxp3+ T-regulatory cells by promoting ubiquitination of Tip60. PLoS ONE, 2017, 12, e0189744.	2.5	41
22	Inhibiting the coregulator CoREST impairs Foxp3+ Treg function and promotes antitumor immunity. Journal of Clinical Investigation, 2020, 130, 1830-1842.	8.2	41
23	Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function. ACS Medicinal Chemistry Letters, 2015, 6, 1156-1161.	2.8	36
24	Function of GATA Factors in the Adult Mouse Liver. PLoS ONE, 2013, 8, e83723.	2.5	35
25	Sirtuin-1 in immunotherapy: A Janus-headed target. Journal of Leukocyte Biology, 2019, 106, 337-343.	3.3	32
26	Targeting Sirtuin-1 prolongs murine renal allograft survival and function. Kidney International, 2016, 89, 1016-1026.	5.2	31
27	Two Lysines in the Forkhead Domain of Foxp3 Are Key to T Regulatory Cell Function. PLoS ONE, 2012, 7, e29035.	2.5	29
28	Kynurenine induces T cell fat catabolism and has limited suppressive effects in vivo. EBioMedicine, 2021, 74, 103734.	6.1	20
29	The CCR2/MCP-1 Chemokine Pathway and Lung Adenocarcinoma. Cancers, 2020, 12, 3723.	3.7	17
30	MEF2D sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity. Journal of Clinical Investigation, 2020, 130, 6242-6260.	8.2	15
31	Donor-host Lymphatic Anastomosis After Murine Lung Transplantation. Transplantation, 2020, 104, 511-515.	1.0	12
32	Utility of IL-2 Complexes in Promoting the Survival of Murine Orthotopic Forelimb Vascularized Composite Allografts. Transplantation, 2018, 102, 70-78.	1.0	10
33	HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Scientific Reports, 2021, 11, 9018.	3.3	10
34	Complementary Roles of GCN5 and PCAF in Foxp3+ T-Regulatory Cells. Cancers, 2019, 11, 554.	3.7	9
35	Regulation of T Cell Differentiation and Alloimmunity by the Cyclin-Dependent Kinase Inhibitor p18ink4c. PLoS ONE, 2014, 9, e91587.	2.5	8
36	A Biological Circuit Involving Mef2c, Mef2d, and Hdac9 Controls the Immunosuppressive Functions of CD4+Foxp3+ T-Regulatory Cells. Frontiers in Immunology, 2021, 12, 703632.	4.8	7

#	Article	IF	CITATIONS
37	Donor bone-marrow CXCR4+ Foxp3+ T-regulatory cells are essential for costimulation blockade-induced long-term survival of murine limb transplants. Scientific Reports, 2020, 10, 9292.	3.3	5
38	Epigenetic Modulation of STAT3 by Histone Deacetylase 6 (HDAC6) Regulates IL-10 Gene Expression and Immune Tolerance Mediated by Antigen-Presenting Cells (APCs). Blood, 2011, 118, 519-519.	1.4	2
39	Limited efficacy of rapamycin monotherapy in vascularized composite allotransplantation. Transplant Immunology, 2020, 61, 101308.	1.2	O
40	Histone Deacetylase 11 (HDAC11) Is a Regulatory Checkpoint of T-Cell Function: Implications for T-Cell Adoptive Immunotherapy. Blood, 2011, 118, 359-359.	1.4	0
41	Control of Foxp3+ Treg Production, Stability and Function by the Nuclear Coâ€regulator, Sin3A. FASEB Journal, 2022, 36, .	0.5	0