Nathalie Dehorter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1244331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes. Neuron, 2013, 79, 1152-1168.	8.1	254
2	A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area. Journal of Neuroscience, 2011, 31, 16570-16580.	3.6	156
3	Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science, 2015, 349, 1216-1220.	12.6	143
4	Lineage-specific laminar organization of cortical GABAergic interneurons. Nature Neuroscience, 2013, 16, 1199-1210.	14.8	113
5	Timing of developmental sequences in different brain structures: physiological and pathological implications. European Journal of Neuroscience, 2012, 35, 1846-1856.	2.6	78
6	Dopamine-Deprived Striatal GABAergic Interneurons Burst and Generate Repetitive Gigantic IPSCs in Medium Spiny Neurons. Journal of Neuroscience, 2009, 29, 7776-7787.	3.6	73
7	Loss of <i>Cntnap2</i> Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior. Cerebral Cortex, 2019, 29, 586-597.	2.9	65
8	Shifting Developmental Trajectories During Critical Periods of Brain Formation. Frontiers in Cellular Neuroscience, 2020, 14, 283.	3.7	63
9	New Insights Into Cholinergic Neuron Diversity. Frontiers in Molecular Neuroscience, 2019, 12, 204.	2.9	60
10	Onset of pup locomotion coincides with loss of NR2C/D-mediated cortico-striatal EPSCs and dampening of striatal network immature activity. Frontiers in Cellular Neuroscience, 2011, 5, 24.	3.7	49
11	Brainâ€derived neurotrophic factor enhances fetal respiratory rhythm frequency in the mouse preBötzinger complex <i>in vitro</i> . European Journal of Neuroscience, 2008, 28, 510-520.	2.6	31
12	Tuning neural circuits by turning the interneuron knob. Current Opinion in Neurobiology, 2017, 42, 144-151.	4.2	24
13	Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups. Frontiers in Cellular Neuroscience, 2012, 6, 7.	3.7	23
14	From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. Journal of Neuroscience, 2021, 41, 9483-9502.	3.6	18
15	Subthalamic Lesion or Levodopa Treatment Rescues Giant GABAergic Currents of PINK1-Deficient Striatum. Journal of Neuroscience, 2012, 32, 18047-18053.	3.6	16
16	Er81 Transcription Factor Fine-Tunes Striatal Cholinergic Interneuron Activity and Drives Habit Formation. Journal of Neuroscience, 2021, 41, 4392-4409.	3.6	9
17	A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biological Psychiatry, 2021, 90, 156-164.	1.3	6
18	Giant GABAA receptor mediated currents in the striatum, a common signature of Parkinson's disease in pharmacological and genetic rodent models. Basal Ganglia, 2014, 3, 197-201.	0.3	3

#	Article	IF	CITATIONS
19	Developmental Disruption of Erbb4 in Pet1+ Neurons Impairs Serotonergic Sub-System Connectivity and Memory Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 770458.	3.7	1
20	Molecular control of the cholinergic interneuron activity in the developing striatum. IBRO Reports, 2019, 6, S402.	0.3	0