Mark Patrick Taylor

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1244181/mark-patrick-taylor-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56 129 3,931 35 h-index g-index citations papers 6.5 5.98 4,576 141 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
129	Bringing citizen science to life: Evaluation of a national citizen science program for public benefit. <i>Environmental Science and Policy</i> , 2022 , 134, 23-33	6.2	O
128	Spatial distribution and composition of mine dispersed trace metals in residential soil and house dust: Implications for exposure assessment and human health. <i>Environmental Pollution</i> , 2021 , 293, 1184	4 <i>6</i> 2 ³	1
127	Atmospheric sources of anthropogenic and geogenic trace metals in Australian lichen and fungi. <i>Anthropocene</i> , 2021 , 33, 100279	3.9	5
126	Blood lead levels in low-income and middle-income countries: a systematic review. <i>Lancet Planetary Health, The</i> , 2021 , 5, e145-e153	9.8	17
125	Data for modelling vegetable uptake of trace metals in soil for the program. <i>Data in Brief</i> , 2021 , 37, 10	7 1:521	3
124	Quantification and exposure assessment of microplastics in Australian indoor house dust. <i>Environmental Pollution</i> , 2021 , 283, 117064	9.3	27
123	Novel Application of Machine Learning Algorithms and Model-Agnostic Methods to Identify Factors Influencing Childhood Blood Lead Levels. <i>Environmental Science & Environmental Science & Environmenta</i>	3 4 8·3	1
122	A citizen science approach to identifying trace metal contamination risks in urban gardens. <i>Environment International</i> , 2021 , 155, 106582	12.9	17
121	Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk. <i>Environmental Pollution</i> , 2021 , 288, 117593	9.3	8
120	International Analysis of Sources and Human Health Risk Associated with Trace Metal Contaminants in Residential Indoor Dust <i>Environmental Science & Environmental Science &</i>	10.3	3
119	Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: Implications for human health. <i>Environmental Pollution</i> , 2020 , 262, 114235	9.3	29
118	A 25-year record of childhood blood lead exposure and its relationship to environmental sources. <i>Environmental Research</i> , 2020 , 186, 109357	7.9	10
117	The relevance of particle size distribution and bioaccessibility on human health risk assessment for trace elements measured in indoor dust. <i>Science of the Total Environment</i> , 2020 , 733, 137931	10.2	12
116	Atmospheric remobilization of natural and anthropogenic contaminants during wildfires. <i>Environmental Pollution</i> , 2020 , 267, 115400	9.3	9
115	Prevalence of childhood lead poisoning and respiratory disease associated with lead smelter emissions. <i>Environment International</i> , 2019 , 127, 340-352	12.9	29
114	Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. <i>Environment International</i> , 2019 , 133, 105125	12.9	34
113	Assessment of the Presence of Soil Lead Contamination Near a Former Lead Smelter in Mombasa, Kenya. <i>Journal of Health and Pollution</i> , 2019 , 9, 190307	2.6	4

(2018-2019)

112	Signs of adaptation to trace metal contamination in a common urban bird. <i>Science of the Total Environment</i> , 2019 , 650, 679-686	10.2	12
111	Assessment of the prevalence of lead-based paint exposure risk in Jakarta, Indonesia. <i>Science of the Total Environment</i> , 2019 , 657, 1382-1388	10.2	11
110	The effect of contemporary mine emissions on childrenß blood lead levels. <i>Environment International</i> , 2019 , 122, 91-103	12.9	14
109	Assessment of soil metal concentrations in residential and community vegetable gardens in Melbourne, Australia. <i>Chemosphere</i> , 2018 , 199, 303-311	8.4	36
108	Air quality management in the Pacific Islands: A review of past performance and implications for future directions. <i>Environmental Science and Policy</i> , 2018 , 84, 26-33	6.2	6
107	Cost Effectiveness of Environmental Lead Risk Mitigation in Low- and Middle-Income Countries. <i>GeoHealth</i> , 2018 , 2, 87-101	5	4
106	Further analysis of the relationship between atmospheric lead emissions and aggressive crime: an ecological study. <i>Environmental Health</i> , 2018 , 17, 10	6	О
105	Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji. <i>Science of the Total Environment</i> , 2018 , 612, 450-461	10.2	17
104	Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 2785-2793	4.7	6
103	Identifying Sources of Environmental Contamination in European Honey Bees (Apis mellifera) Using Trace Elements and Lead Isotopic Compositions. <i>Environmental Science & Elements amp; Technology</i> , 2018 , 52, 99	1 - 1001	46
102	Improving human health outcomes with a low-cost intervention to reduce exposures from lead acid battery recycling: Dong Mai, Vietnam. <i>Environmental Research</i> , 2018 , 161, 181-187	7.9	18
101	Heavy Metal: An Interactive Environmental Art Installation. <i>Leonardo Music Journal</i> , 2018 , 28, 8-12	0.1	
100	VegeSafe: a community science program generating a national residential garden soil metal(loid) database. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 33745-33754	5.1	2
99	A meta-analysis of blood lead levels in India and the attributable burden of disease. <i>Environment International</i> , 2018 , 121, 461-470	12.9	12
98	Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. <i>Scientific Reports</i> , 2018 , 8, 14639	4.9	47
97	Delineating the spatial extent of smelter-related atmospheric fallout using a rapid assessment technique. <i>Applied Geochemistry</i> , 2018 , 96, 35-41	3.5	3
96	Tracing natural and industrial contamination and lead isotopic compositions in an Australian native bee species. <i>Environmental Pollution</i> , 2018 , 242, 54-62	9.3	15
95	Radiocarbon determination of fossil and contemporary carbon contribution to aerosol in the Pacific Islands. <i>Science of the Total Environment</i> , 2018 , 643, 183-192	10.2	1

94	Geochemical sources, forms and phases of soil contamination in an industrial city. <i>Science of the Total Environment</i> , 2017 , 584-585, 505-514	10.2	26
93	An odyssey of environmental pollution: The rise, fall and remobilisation of industrial lead in Australia. <i>Applied Geochemistry</i> , 2017 , 83, 3-13	3.5	26
92	Estimates of potential childhood lead exposure from contaminated soil using the US EPA IEUBK Model in Sydney, Australia. <i>Environmental Research</i> , 2017 , 156, 781-790	7.9	30
91	Applying geochemical signatures of atmospheric dust to distinguish current mine emissions from legacy sources. <i>Atmospheric Environment</i> , 2017 , 161, 82-89	5.3	11
90	Chemical, biological, and DNA markers for tracing slaughterhouse effluent. <i>Environmental Research</i> , 2017 , 156, 534-541	7.9	1
89	PM 2.5 and aerosol black carbon in Suva, Fiji. Atmospheric Environment, 2017 , 150, 55-66	5.3	12
88	Remobilisation of industrial lead depositions in ash during Australian wildfires. <i>Science of the Total Environment</i> , 2017 , 599-600, 1233-1240	10.2	16
87	VegeSafe: A community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening. <i>Environmental Pollution</i> , 2017 , 222, 557-566	9.3	53
86	Airborne ultrafine particles in a Pacific Island country: Characteristics, sources and implications for human exposure. <i>Environmental Pollution</i> , 2017 , 231, 367-378	9.3	4
85	Reducing risk and increasing confidence of decision making at a lower cost: In-situ pXRF assessment of metal-contaminated sites. <i>Environmental Pollution</i> , 2017 , 229, 780-789	9.3	39
84	The Global Burden of Lead Toxicity Attributable to Informal Used Lead-Acid Battery Sites. <i>Annals of Global Health</i> , 2016 , 82, 686-699	3.3	42
83	Widespread copper and lead contamination of household drinking water, New South Wales, Australia. <i>Environmental Research</i> , 2016 , 151, 275-285	7.9	72
82	Unravelling a Raniner myth Rthat environmental contamination in mining towns is naturally occurring. Environmental Geochemistry and Health, 2016, 38, 1015-27	4.7	20
81	Insights into past atmospheric lead emissions using lead concentrations and isotopic compositions in historic lichens and fungi (1852\(\textbf{Q}\)008) from central and southern Victoria, Australia. <i>Atmospheric Environment</i> , 2016 , 139, 46-55	5.3	12
80	Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi. <i>Environmental Pollution</i> , 2016 , 208, 678-87	9.3	20
79	The relationship between atmospheric lead emissions and aggressive crime: an ecological study. <i>Environmental Health</i> , 2016 , 15, 23	6	25
78	Evaluation and assessment of the efficacy of an abatement strategy in a former lead smelter community, Boolaroo, Australia. <i>Environmental Geochemistry and Health</i> , 2016 , 38, 941-54	4.7	12
77	Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?. <i>Environmental Pollution</i> , 2016 , 214, 255-264	9.3	134

Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine. <i>Chemosphere</i> , 2016 , 154, 40-47	8.4	22
Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 11706-11713	10.3	28
Reply to Gulsonß comments on Fracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wineß <i>Chemosphere</i> , 2016 , 165, 579-584	8.4	2
Evaluating the efficacy of playground washing to reduce environmental metal exposures. <i>Environmental Pollution</i> , 2015 , 202, 112-9	9.3	8
Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 122	7 5 -188	43
Widespread Environmental Contamination Hazards in Agricultural Soils from the Use of Lead Joints in Above Ground Large-Scale Water Supply Pipelines. <i>Water, Air, and Soil Pollution</i> , 2015 , 226, 1	2.6	2
Atmospherically deposited trace metals from bulk mineral concentrate port operations. <i>Science of the Total Environment</i> , 2015 , 515-516, 143-52	10.2	19
A review of environmental lead exposure and management in Mount Isa, Queensland. <i>Reviews on Environmental Health</i> , 2015 , 30, 183-9	3.8	2
Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 631-7	4.3	18
Environmental contamination in an Australian mining community and potential influences on early childhood health and behavioural outcomes. <i>Environmental Pollution</i> , 2015 , 207, 345-56	9.3	32
Omissions about the sources of contaminant emissions and depositions IA reply to comments on Taylor, M.P., Davies, P.J., Kristensen, L.J., Csavina, J., 2014. Licenced to pollute but not to poison: The ineffectiveness of regulatory authorities at protecting public health from atmospheric arsenic,	3.9	6
Comments on manuscriptZheng, J., Huynh, T., Gasparon, M., Ng, J. and Noller, B., 2013. Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure. Environmental Science and Pollution Research, 20, 8404-8416. <i>Environmental</i>	5.1	1
Identification of lead sources in residential environments: Sydney Australia. <i>Environmental Pollution</i> , 2014 , 184, 238-46	9.3	71
Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health. <i>Environmental Research</i> , 2014 , 135, 296	-303	72
Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: implications for emission management and human health. <i>Science of the Total Environment</i> , 2014 , 493, 750-6	10.2	71
Sublethal toxicity of untreated and treated stormwater Zn concentrations on the foraging behaviour of Paratya australiensis (Decapoda: Atyidae). <i>Ecotoxicology</i> , 2014 , 23, 1022-9	2.9	13
Licenced to pollute but not to poison: The ineffectiveness of regulatory authorities at protecting public health from atmospheric arsenic, lead and other contaminants resulting from mining and smelting operations. <i>Aeolian Research</i> , 2014 , 14, 35-52	3.9	42
Australiaß leading public health body delays action on the revision of the public health goal for blood lead exposures. <i>Environment International</i> , 2014 , 70, 113-7	12.9	21
	Australian red wine. Chemosphere, 2016, 154, 40-47 Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. Environmental Science & Amp; Technology, 2016, 50, 11706-11713 Reply to GulsonB comments on Hracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wineR Chemosphere, 2016, 165, 579-584 Evaluating the efficacy of playground washing to reduce environmental metal exposures. Environmental Pollution, 2015, 202, 112-9 Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions. Environmental Science and Pollution Research, 2015, 22, 122 Widespread Environmental Contamination Hazards in Agricultural Soils from the Use of Lead Joints in Above Ground Large-Scale Water Supply Pipelines. Water, Air, and Soil Pollution, 2015, 226, 1 Atmospherically deposited trace metals from bulk mineral concentrate port operations. Science of the Total Environmenta, 2015, 515-516, 143-52 A review of environmental lead exposure and management in Mount Isa, Queensland. Reviews on Environmental Health, 2015, 30, 183-9 Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions. Environmental contamination in an Australian mining community and potential influences on early childhood health and behavioural outcomes. Environmental Pollution, 2015, 207, 345-56 Omissions about the sources of contaminant emissions and depositions In Preply to comments on Taylor, M.P., Davies, P.J., Kristensen, L.J., Csavina, J., 2014. Licenced to pollute but not to poison: The ineffectiveness of regulatory authorities at protecting public health from atmospheric arsenic. Comments on manuscript—Zheng, J.J., Huynh, T., Gasparon, M., Ng, J. and Noller, B., 2013. Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure. Environmental Science and Pol	Australian red wine. Chemosphere, 2016, 154, 40-47 Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. Environmental Science & Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. Environmental Science & Deposition Services of lead contamination using lead isotopic compositions in Australian red wineR Chemosphere, 2016, 165, 579-584 Evaluating the efficacy of playground washing to reduce environmental metal exposures. Environmental Pollution, 2015, 202, 112-9 Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasamania using lead isotopic compositions. Environmental Science and Pollution Research, 2015, 22, 12276-88 Widespread Environmental Contamination Hazards in Agricultural Soils from the Use of Lead Joints in Above Ground Large-Scale Water Supply Pipelines. Water, Air, and Soil Pollution, 2015, 226, 1 Atmospherically deposited trace metals from bulk mineral concentrate port operations. Science of the Total Environment, 2015, 515-516, 143-52 A review of environmental lead exposure and management in Mount Isa, Queensland. Reviews on Environmental Health, 2015, 30, 183-9 Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions. Environmental contamination in an Australian mining community and potential influences on early childhood health and behavioural outcomes. Environmental Pollution, 2015, 207, 345-56 Omissions about the sources of contaminant emissions and depositions IA reply to comments on Taylor, M.P., Davies, P.J., Kristensen, L.J., Csavina, J., 2014. Licenced to pollute but not to poison: the ineffectiveness of regulatory authorities at protecting public health from atmospheric arsenic, Comments on manuscript-Zheng, Jl., Huynh, T., Gasparon, M., Ng. J. and Nollen, Bl. 2013. Human health is deviced and pollution of lead sources in residential environments: Sydney Australia. Environmental Pollution, 2

58	On-site teaching with XRF and XRD: training the next generation of analytical X-ray professionals. <i>Powder Diffraction</i> , 2014 , 29, S8-S14	1.8	2
57	Reply to comments on "Identification of lead sources in residential environments: Sydney Australia" by Laidlaw et al. (2014). <i>Environmental Pollution</i> , 2014 , 192, 216-9; discussion 220-1	9.3	
56	Lead isotopic compositions of ash sourced from Australian bushfires. <i>Environmental Pollution</i> , 2014 , 190, 159-65	9.3	33
55	Identification of environmental lead sources and pathways in a mining and smelting town: Mount Isa, Australia. <i>Environmental Pollution</i> , 2013 , 180, 304-11	9.3	87
54	The nature and distribution of Cu, Zn, Hg, and Pb in urban soils of a regional city: Lithgow, Australia. <i>Applied Geochemistry</i> , 2013 , 36, 83-91	3.5	21
53	Determining the relative importance of soil sample locations to predict risk of child lead exposure. <i>Environment International</i> , 2013 , 60, 7-14	12.9	42
52	Environmental lead exposure risks associated with childrenß outdoor playgrounds. <i>Environmental Pollution</i> , 2013 , 178, 447-54	9.3	55
51	Effect of catchment urbanization on ant diversity in remnant riparian corridors. <i>Landscape and Urban Planning</i> , 2013 , 110, 155-163	7.7	9
50	Environmental impact of a major copper mine spill on a river and floodplain system. <i>Anthropocene</i> , 2013 , 3, 36-50	3.9	9
49	Linking source and effect: resuspended soil lead, air lead, and childrenß blood lead levels in Detroit, Michigan. <i>Environmental Science & Environmental & Env</i>	10.3	164
48	Floodwater metal contaminants in an Australian dryland river: a baseline for assessing change downstream of a major lead-zinc-silver and copper mine. <i>Journal of Environmental Quality</i> , 2013 , 42, 474	4-3843	7
47	Eliminating childhood lead toxicity in Australia: a call to lower the intervention level. In reply. <i>Medical Journal of Australia</i> , 2013 , 199, 323-4	4	2
46	Re-suspension of lead contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, Detroit and Pittsburgh, USA. <i>Atmospheric Environment</i> , 2012 , 49, 302-310	5.3	109
45	A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. <i>Science of the Total Environment</i> , 2012 , 433, 58-73	10.2	303
44	Eliminating childhood lead toxicity in Australia: a call to lower the intervention level. <i>Medical Journal of Australia</i> , 2012 , 197, 493	4	17
43	Fields and forests in flames: lead and mercury emissions from wildfire pyrogenic activity. <i>Environmental Health Perspectives</i> , 2012 , 120, a56-7	8.4	9
42	Environmental and landscape factors influencing ant and plant diversity in suburban riparian corridors. <i>Landscape and Urban Planning</i> , 2011 , 103, 372-382	7.7	37
41	Lessons learned on lead poisoning in children: one-hundred years on from Turner ß declaration. <i>Journal of Paediatrics and Child Health</i> , 2011 , 47, 849-56	1.3	29

(2006-2011)

40	Potential for childhood lead poisoning in the inner cities of Australia due to exposure to lead in soil dust. <i>Environmental Pollution</i> , 2011 , 159, 1-9	9.3	106
39	The influence of riparian corridor width on ant and plant assemblages in northern Sydney, Australia. <i>Urban Ecosystems</i> , 2011 , 14, 1-16	2.8	10
38	Water and sediment quality of dry season pools in a dryland river system: the upper Leichhardt River, Queensland, Australia. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 2050-61		2
37	Troubled waters-an examination of the disconnect between river science and law. <i>Environmental Science & Environmental Science</i>	10.3	4
36	The public minimization of the risks associated with environmental lead exposure and elevated blood lead levels in children, Mount Isa, Queensland, Australia. <i>Archives of Environmental and Occupational Health</i> , 2010 , 65, 45-8	2	20
35	Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. <i>Applied Geochemistry</i> , 2010 , 25, 841-855	3.5	117
34	Mining and urban impacts on semi-arid freshwater aquatic systems: the example of Mount Isa, Queensland. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 977-86		14
33	Sediment load and floodplain deposition rates: Comparison of the Fly and Strickland rivers, Papua New Guinea. <i>Journal of Geophysical Research</i> , 2008 , 113,		28
32	The dispersal and storage of sediment-associated metals in an arid river system: the Leichhardt River, Mount Isa, Queensland, Australia. <i>Environmental Pollution</i> , 2008 , 152, 193-204	9.3	38
31	Quantification of class 1 integron abundance in natural environments using real-time quantitative PCR. <i>FEMS Microbiology Letters</i> , 2008 , 278, 207-12	2.9	83
30	Riverbanks and the law: The arbitrary nature of river boundaries in New South Wales, Australia. <i>The Environmentalist</i> , 2007 , 27, 131-142		3
29	The Drivers of Immigration in Contemporary Society: Unequal Distribution of Resources and Opportunities. <i>Human Ecology</i> , 2007 , 35, 775-776	2	1
28	Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukluft Mountains, Namibia. <i>Sedimentary Geology</i> , 2007 , 195, 39-53	2.8	51
27	Distribution and storage of sediment-associated heavy metals downstream of the remediated Rum Jungle Mine on the East Branch of the Finniss River, Northern Territory, Australia. <i>Journal of Geochemical Exploration</i> , 2007 , 92, 55-72	3.8	25
26	Sydney® Water Woes. Australasian Journal of Environmental Management, 2006, 13, 138-141	2	
25	SHORT REPORTS. Australasian Journal of Environmental Management, 2006 , 13, 138-145	2	
24	An environmental model of fluvial tufas in the monsoonal tropics, Barkly karst, northern Australia. <i>Geomorphology</i> , 2006 , 73, 78-100	4.3	36
23	Why rehabilitate urban river systems?. <i>Area</i> , 2006 , 38, 312-325	1.7	98

22	When is a River not a River? Consideration of the legal definition of a river for geomorphologists practising in New South Wales, Australia. <i>Australian Geographer</i> , 2005 , 36, 183-200	2.1	19
21	Did humid-temperate rivers in the Old and New Worlds respond differently to clearance of riparian vegetation and removal of woody debris?. <i>Progress in Physical Geography</i> , 2005 , 29, 27-49	3.5	57
20	The formation and environmental significance of calcite rafts in tropical tufa-depositing rivers of northern Australia. <i>Sedimentology</i> , 2004 , 51, 1089-1101	3.3	32
19	Are River Styles ecologically meaningful? A test of the ecological significance of a geomorphic river characterization scheme. <i>Aquatic Conservation: Marine and Freshwater Ecosystems</i> , 2004 , 14, 25-48	2.6	31
18	Are current models of tufa sedimentary environments applicable to tropical systems? A case study from the Gregory River. <i>Sedimentary Geology</i> , 2003 , 162, 199-218	2.8	47
17	Larval caddis-fly nets and retreats: a unique biosedimentary paleocurrent indicator for fossil tufa deposits. <i>Sedimentary Geology</i> , 2003 , 161, 207-215	2.8	21
16	Soiling and decay of N.M.E.P. limestone tablets. <i>Science of the Total Environment</i> , 2002 , 292, 215-29	10.2	27
15	A New Technique to Evaluate and Quantify Modified Solution Kinetics of Calcareous Materials After Sulphuric Acid Pre-Treatment and Urban Exposure. <i>Studies in Conservation</i> , 2002 , 47, 88-94	0.6	2
14	Heavy metal contamination of an arid river environment: Gruben River, Namibia. <i>Geomorphology</i> , 2002 , 42, 311-327	4.3	53
13	Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia. <i>Hydrological Processes</i> , 2002 , 16, 2941-2962	3.3	40
12	Channel Flow Cell Studies of the Inhibiting Action of Gypsum on the Dissolution Kinetics of Calcite: A Laboratory Approach with Implications for Field Monitoring. <i>Journal of Colloid and Interface Science</i> , 2001 , 236, 354-361	9.3	30
11	A study of Holocene floodplain particle size characteristics with special reference to palaeochannel infills from the upper Severn basin, Wales, UK. <i>Geological Journal</i> , 2001 , 36, 143-157	1.7	2
10	A geomorphological framework for river characterization and habitat assessment. <i>Aquatic Conservation: Marine and Freshwater Ecosystems</i> , 2001 , 11, 373-389	2.6	113
9	River sedimentation and fluvial response to Holocene environmental change in the Yorkshire Ouse Basin, northern England. <i>Holocene</i> , 2000 , 10, 201-212	2.6	24
8	Holocene environmental change in the Yorkshire Ouse basin and its influence on river dynamics and sediment fluxes to the coastal zone. <i>Geological Society Special Publication</i> , 2000 , 166, 87-96	1.7	11
7	Sono-Cathodic Stripping Voltammetry of Lead at a Polished Boron-Doped Diamond Electrode: Application to the Determination of Lead in River Sediment. <i>Electroanalysis</i> , 1999 , 11, 1083-1088	3	56
6	2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK 1999 , 13, 1087-1102		77
5	Non-synchronous response of adjacent floodplain systems to Holocene environmental change. <i>Geomorphology</i> , 1997 , 18, 251-264	4.3	19

LIST OF PUBLICATIONS

4	The spatial distribution of heavy metal contaminated sediment across terraced floodplains. <i>Catena</i> , 1997 , 30, 229-249	5.8	33
3	Holocene alluvial sedimentation and valley floor development: the River Swale, Catterick, North Yorkshire, UK. <i>Proceedings of the Yorkshire Geological Society</i> , 1997 , 51, 317-327	0.8	25
2	The variability of heavy metals in floodplain sediments: A case study from mid Wales. <i>Catena</i> , 1996 , 28, 71-87	5.8	51
1	River behaviour and Holocene alluviation: The River Severn at Welshpool, mid-Wales, U.K <i>Earth Surface Processes and Landforms</i> , 1996 , 21, 77-91	3.7	24