
Tobias B Dansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/124417/publications.pdf Version: 2024-02-01

TORIAS R DANSEN

#	Article	IF	CITATIONS
1	Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 2002, 419, 316-321.	27.8	1,399
2	Unravelling the tumor-suppressive functions of FOXO proteins. Trends in Cell Biology, 2008, 18, 421-429.	7.9	229
3	Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nature Cell Biology, 2012, 14, 829-837.	10.3	209
4	Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nature Chemical Biology, 2009, 5, 664-672.	8.0	177
5	Redox-Dependent Control of FOXO/DAF-16 by Transportin-1. Molecular Cell, 2013, 49, 730-742.	9.7	138
6	Re-evaluating the role of FOXOs in cancer. Seminars in Cancer Biology, 2018, 50, 90-100.	9.6	136
7	Glucose Withdrawal Induces Oxidative Stress followed by Apoptosis in Glioblastoma Cells but not in Normal Human Astrocytes. Molecular Cancer Research, 2006, 4, 319-330.	3.4	130
8	Forkhead Box O as a Sensor, Mediator, and Regulator of Redox Signaling. Antioxidants and Redox Signaling, 2011, 14, 1093-1106.	5.4	116
9	Peroxisomes in human fibroblasts have a basic pH. Nature Cell Biology, 2000, 2, 51-53.	10.3	110
10	Release of Mps1 from kinetochores is crucial for timely anaphase onset. Journal of Cell Biology, 2010, 191, 281-290.	5.2	97
11	The Hallmarks of Cancer from a Redox Perspective. Antioxidants and Redox Signaling, 2016, 25, 300-325.	5.4	82
12	Activation of Forkhead Box O Transcription Factors by Oncogenic BRAF Promotes p21cip1-Dependent Senescence. Cancer Research, 2010, 70, 8526-8536.	0.9	81
13	Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both?. Antioxidants and Redox Signaling, 2020, 33, 839-859.	5.4	75
14	Covalent targeting of acquired cysteines in cancer. Current Opinion in Chemical Biology, 2016, 30, 61-67.	6.1	73
15	The peroxisomal lumen in Saccharomyces cerevisiae is alkaline. Journal of Cell Science, 2004, 117, 4231-4237.	2.0	70
16	The Peroxisome in Oxidative Stress. IUBMB Life, 2001, 51, 223-230.	3.4	62
17	Evolutionary Acquisition of Cysteines Determines FOXO Paralog-Specific Redox Signaling. Antioxidants and Redox Signaling, 2015, 22, 15-28.	5.4	61
18	FOXO Transcription Factors Both Suppress and Support Breast Cancer Progression. Cancer Research, 2018, 78, 2356-2369.	0.9	61

TOBIAS B DANSEN

#	Article	IF	CITATIONS
19	DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radical Biology and Medicine, 2021, 172, 298-311.	2.9	55
20	Specific Requirement for Bax, Not Bak, in Myc-induced Apoptosis and Tumor Suppression in Vivo. Journal of Biological Chemistry, 2006, 281, 10890-10895.	3.4	54
21	Proteome-wide Changes in Protein Turnover Rates in C.Âelegans Models of Longevity and Age-Related Disease. Cell Reports, 2016, 16, 3041-3051.	6.4	54
22	Radiation-Induced Caspase-8 Mediates p53-Independent Apoptosis in Glioma Cells. Cancer Research, 2006, 66, 4223-4232.	0.9	52
23	Bid Mediates Apoptotic Synergy between Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) and DNA Damage. Journal of Biological Chemistry, 2005, 280, 12486-12493.	3.4	48
24	High-affinity binding of very-long-chain fatty acyl-CoA esters to the peroxisomal non-specific lipid-transfer protein (sterol carrier protein-2). Biochemical Journal, 1999, 339, 193-199.	3.7	45
25	Regulation of sterol carrier protein gene expression by the Forkhead transcription factor FOXO3a. Journal of Lipid Research, 2004, 45, 81-88.	4.2	45
26	Bcl-xL gain of function and p19ARF loss of function cooperate oncogenically with Myc in vivo by distinct mechanisms. Cancer Cell, 2006, 10, 113-120.	16.8	39
27	Malignant mesothelioma cells are rapidly sensitized to TRAIL-induced apoptosis by low-dose anisomycin via Bim. Molecular Cancer Therapeutics, 2007, 6, 2766-2776.	4.1	35
28	Mitochondria-Derived H2O2 Promotes Symmetry Breaking of the C.Âelegans Zygote. Developmental Cell, 2020, 53, 263-271.e6.	7.0	34
29	Peptide-Based Targeting of Fluorophores to Organelles in Living Cells. Experimental Cell Research, 2001, 265, 288-293.	2.6	33
30	Forkhead Box O Transcription Factors: Key Players in Redox Signaling. Antioxidants and Redox Signaling, 2011, 14, 559-561.	5.4	29
31	Cross-talk between redox signalling and protein aggregation. Biochemical Society Transactions, 2020, 48, 379-397.	3.4	29
32	The Small GTPase RALA Controls c-Jun N-terminal Kinase-mediated FOXO Activation by Regulation of a JIP1 Scaffold Complex. Journal of Biological Chemistry, 2013, 288, 21729-21741.	3.4	27
33	GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Human Molecular Genetics, 2019, 28, 96-104.	2.9	23
34	Intermolecular disulfide-dependent redox signalling. Biochemical Society Transactions, 2014, 42, 971-978.	3.4	22
35	The Human 2-Cys Peroxiredoxins form Widespread, Cysteine-Dependent- and Isoform-Specific Protein-Protein Interactions. Antioxidants, 2021, 10, 627.	5.1	22
36	Targeted fluorescent probes in peroxisome function. The Histochemical Journal, 2001, 33, 65-69.	0.6	21

TOBIAS B DANSEN

#	Article	IF	CITATIONS
37	Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A. Redox Biology, 2020, 28, 101316.	9.0	17
38	Immunological analyses of alkyl-dihydroxyacetonephosphate synthase in human peroxisomal disorders. European Journal of Cell Biology, 1999, 78, 339-348.	3.6	12
39	A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Reports, 2021, 34, 108675.	6.4	11
40	p53 Forms Redox-Dependent Protein–Protein Interactions through Cysteine 277. Antioxidants, 2021, 10, 1578.	5.1	7
41	Redox signaling modulates Rho activity and tissue contractility in the <i>Caenorhabditis elegans</i> spermatheca. Molecular Biology of the Cell, 2020, 31, 1486-1497.	2.1	6
42	Targeting FOXO1 as an option to treat obesity?. Cell Cycle, 2015, 14, 2558-2558.	2.6	5
43	Modulating organelle distribution using light-inducible heterodimerization in C.Âelegans. STAR Protocols, 2021, 2, 100273.	1.2	0
44	Abstract P1-19-02: Repurposing the FOXO4 senolytic against triple-negative breast cancer. Cancer Research, 2022, 82, P1-19-02-P1-19-02.	0.9	0