
Neil E Rowland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1244154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurobiology of an anorectic drug: Fenfluramine. Progress in Neurobiology, 1986, 27, 13-62.	2.8	312
2	Effects of the cannabinoid receptor antagonist SR 141716, alone and in combination with dexfenfluramine or naloxone, on food intake in rats. Psychopharmacology, 2001, 159, 111-116.	1.5	132
3	Autism and Schizophrenia: Intestinal Disorders. Nutritional Neuroscience, 2000, 3, 57-72.	1.5	114
4	Food or fluid restriction in common laboratory animals: balancing welfare considerations with scientific inquiry. Comparative Medicine, 2007, 57, 149-60.	0.4	94
5	Sodium appetite: Species and strain differences and role of renin-angiotensin-aldosterone system. Appetite, 1988, 11, 143-178.	1.8	93
6	Dexfenfluramine induces fos-like immunoreactivity in discrete brain regions in rats. Brain Research Bulletin, 1993, 31, 43-48.	1.4	78
7	Impaired drinking responses of rats with lesions of the subfornical organ Journal of Comparative and Physiological Psychology, 1981, 95, 104-113.	1.8	69
8	Reversal of dexfenfluramine-induced anorexia and c-Fos/c-Jun expression by lesion in the lateral parabrachial nucleus. Brain Research, 1994, 640, 255-267.	1.1	63
9	Differences among †̃serotonergic' anorectics in a cross-tolerance paradigm: Do they all act on serotonin systems?. European Journal of Pharmacology, 1982, 81, 57-66.	1.7	59
10	Dehydration parameters and standards for laboratory mice. Journal of the American Association for Laboratory Animal Science, 2013, 52, 233-9.	0.6	55
11	Cannabinoid-1 receptor antagonists reduce caloric intake by decreasing palatable diet selection in a novel dessert protocol in female rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R67-R75.	0.9	50
12	Effects of central and peripheral injections of apelin on fluid intake and cardiovascular parameters in rats. Physiology and Behavior, 2006, 89, 221-225.	1.0	47
13	Circadian rhythms and partial recovery of regulatory drinking in rats after lateral hypothalamic lesions Journal of Comparative and Physiological Psychology, 1976, 90, 382-393.	1.8	42
14	Effect of continuous infusions of dexfenfluramine on food intake, body weight and brain amines in rats. Life Sciences, 1986, 39, 2581-2586.	2.0	42
15	Food demand and meal size in mice with single or combined disruption of melanocortin type 3 and 4 receptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1667-R1674.	0.9	41
16	Brain mechanisms of mammalian fluid homeostasis: Insights from use of immediate early gene mapping. Neuroscience and Biobehavioral Reviews, 1998, 23, 49-63.	2.9	40
17	Effect of MTII on food intake and brain c-Fos in melanocortin-3, melanocortin-4, and double MC3 and MC4 receptor knockout mice. Peptides, 2010, 31, 2314-2317.	1.2	38
18	Inhibition of gastric emptying by peripheral and central fenfluramine in rats: Correlation with anorexia. Life Sciences, 1984, 34, 2495-2499.	2.0	37

#	Article	IF	CITATIONS
19	Characteristics of thirst and sodium appetite in mice (Mus musculus) Behavioral Neuroscience, 1988, 102, 969-974.	0.6	37
20	Expression of Fos in rat brain in relation to sodium appetite: furosemide and cerebroventricular renin. Brain Research, 1996, 728, 90-96.	1.1	37
21	Feeding behavior, obesity, and neuroeconomics. Physiology and Behavior, 2008, 93, 97-109.	1.0	37
22	Accurate caloric compensation in rats for electively consumed ethanol?beer or ethanol?polycose mixtures. Pharmacology Biochemistry and Behavior, 2005, 80, 109-114.	1.3	31
23	Quinine drinking: More regulatory puzzles. Physiology and Behavior, 1977, 18, 1165-1170.	1.0	29
24	Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1453-R1460.	0.9	28
25	Zona incerta lesions: Regulatory drinking deficits to intravenous NaCl, angiotensin, but not to salt in the food. Physiology and Behavior, 1979, 23, 745-750.	1.0	27
26	Effect of chronic dexfenfluramine on Fos in rat brain. Brain Research, 1996, 728, 188-192.	1.1	27
27	Anorectic efficacy of the fenfluramine/phentermine combination in rats: additivity or synergy?. European Journal of Pharmacology, 1999, 373, 127-134.	1.7	27
28	High temporal resolution of amino acid levels in rat nucleus accumbens during operant ethanol self-administration: involvement of elevated glycine in anticipation. Journal of Neurochemistry, 2008, 106, 170-181.	2.1	26
29	Different behavioral mechanisms underlie tolerance to the anorectic effects of fenfluramine and quipazine. Psychopharmacology, 1983, 81, 155-157.	1.5	25
30	Recovery of regulatory drinking following lateral hypothalamic lesions: Nature of residual deficits analyzed by NaCl and water infusions. Experimental Neurology, 1976, 53, 488-507.	2.0	24
31	Impaired drinking to angiotensin II after subdiaphragmatic vagotomy in rats. Physiology and Behavior, 1980, 24, 1177-1180.	1.0	24
32	Dissociation of Fos-like immunoreactivity in lamina terminalis and magnocellular hypothalamic nuclei induced by hypernatremia. Brain Research, 1996, 708, 45-49.	1.1	24
33	Meal patterns of lean and leptin-deficient obese mice in a simulated foraging environment. Physiology and Behavior, 2003, 79, 275-279.	1.0	24
34	Effect of (â^')-trans-PAT, a novel 5-HT2C receptor agonist, on intake of palatable food in mice. Pharmacology Biochemistry and Behavior, 2008, 91, 176-180.	1.3	24
35	Intermittent high-dose ethanol exposures increase motivation for operant ethanol self-administration: Possible neurochemical mechanism. Brain Research, 2010, 1310, 142-153.	1.1	24
36	Role of angiotensin in body fluid homeostasis of mice: fluid intake, plasma hormones, and brain Fos. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1586-R1594.	0.9	23

#	Article	IF	CITATIONS
37	Effects of Prior Cocaine Versus Morphine or Heroin Self-Administration on Extinction Learning Driven by Overexpectation Versus Omission of Reward. Biological Psychiatry, 2015, 77, 912-920.	0.7	23
38	Effect of opioid and cannabinoid receptor antagonism on orphanin FQ-induced hyperphagia in rats. European Journal of Pharmacology, 2002, 442, 237-239.	1.7	22
39	Meal patterns of mice under systematically varying approach and unit costs for food in a closed economy. Physiology and Behavior, 2009, 98, 85-93.	1.0	22
40	The effects of extended intravenous nicotine administration on body weight and meal patterns in male Sprague–Dawley Rats. Psychopharmacology, 2013, 228, 359-366.	1.5	22
41	Comparison of the effects of the dipeptidyl peptidase inhibitors captopril, ramipril, and enalapril on water intake and sodium appetite of Sprague-Dawley rats Behavioral Neuroscience, 1988, 102, 953-960.	0.6	21
42	Role of angiotensin in body fluid homeostasis of mice: effect of losartan on water and NaCl intakes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R638-R644.	0.9	20
43	Thirst and sodium appetite in Dahl rats. Physiology and Behavior, 1990, 47, 331-335.	1.0	19
44	Losartan inhibition of angiotensin-related drinking and Fos immunoreactivity in hypertensive and hypotensive contexts. Brain Research, 1996, 742, 253-259.	1.1	19
45	Comparison of the dipsogenic responsiveness of Long-Evans and Sprague-Dawley rats. Physiology and Behavior, 1990, 47, 1187-1192.	1.0	18
46	Molecular and behavioral pharmacology of two novel orally-active 5HT2 modulators: Potential utility as antipsychotic medications. Neuropharmacology, 2013, 72, 274-281.	2.0	18
47	Behavioral and physiological aspects of body fluid homeostasis in Fischer 344 rats. Physiology and Behavior, 1988, 42, 499-505.	1.0	17
48	Aging and fluid homeostasis in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1441-R1450.	0.9	17
49	Acute anorectic effect of single and combined drugs in mice using a non-deprivation protocol. Psychopharmacology, 2001, 157, 193-196.	1.5	17
50	Effect of DuP 753, a Nonpeptide Angiotensin II Receptor Antagonist, on the Drinking Responses to Acutely Administered Dipsogenic Agents in Rats. Experimental Biology and Medicine, 1992, 199, 158-164.	1.1	16
51	Long-term administration of dexfenfluramine to genetically obese (ob/ob) and lean mice: Body weight and brain serotonin changes. Pharmacology Biochemistry and Behavior, 1994, 49, 287-294.	1.3	16
52	Centrally mediated vasodilation of the rat's tail by angiotensin II. Physiology and Behavior, 1996, 60, 861-865.	1.0	16
53	Food demand functions in mice. Appetite, 2008, 51, 669-675.	1.8	16
54	Effect of two types of environmental enrichment for singly housed mice on food intake and weight gain. Lab Animal, 2005, 34, 29-32.	0.2	15

#	Article	IF	CITATIONS
55	Cross tolerance between anorectic action and induction of Fos-ir with dexfenfluramine and 5HT 1B/2C agonists in rats. Psychopharmacology, 2001, 156, 108-114.	1.5	14
56	Effects of caloric restriction on nitrogen and carbon stable isotope ratios in adult rat bone. Rapid Communications in Mass Spectrometry, 2014, 28, 2065-2074.	0.7	14
57	Effect of chronic administration of dexfenfluramine on stress- and palatability-induced food intake in rats. Physiology and Behavior, 1989, 46, 145-149.	1.0	13
58	Brain muscarinic receptor subtypes mediating water intake and Fos following cerebroventricular administration of bethanecol in rats. Psychopharmacology, 2003, 167, 174-179.	1.5	13
59	Comparison of C57BL/6 and DBA/2 mice in food motivation and satiety. Physiology and Behavior, 2010, 99, 679-683.	1.0	13
60	Order and disorder: Temporal organization of eating. Behavioural Brain Research, 2012, 231, 272-278.	1.2	13
61	Male and female mice show equal variability in food intake across 4-day spans that encompass estrous cycles. PLoS ONE, 2019, 14, e0218935.	1.1	13
62	Effect of losartan potassium and deoxycorticosterone acetate on tail skin temperature response to acute administration of angiotensin II. Pharmacology Biochemistry and Behavior, 1992, 43, 229-233.	1.3	12
63	Sodium deficiency and salt appetite in ICR:CD1 mice. Physiology and Behavior, 2004, 80, 629-635.	1.0	12
64	Effect of serotonergic anorectics on food intake and induction of Fos in brain of mice with disruption of melanocortin 3 and/or 4 receptors. Pharmacology Biochemistry and Behavior, 2010, 97, 107-111.	1.3	12
65	Effects of meal frequency and snacking on food demand in mice. Appetite, 2012, 58, 117-123.	1.8	12
66	NaCl Appetite in Two Strains of Rat Reported to Be Resistant to Mineralocorticoid- induced Hypertension. Physiology and Behavior, 1998, 64, 49-56.	1.0	11
67	Dexfenfluramine and norfenfluramine: comparison of mechanism of action in feeding and brain Fos-ir studies. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R390-R399.	0.9	11
68	Sham drinking in rats: Osmotic and volumetric manipulations. Physiology and Behavior, 1990, 47, 625-630.	1.0	10
69	Tolerance to the anorectic effect of dexfenfluramine in rats: Role of serotonin, cholecystokinin, and neuropeptide Y. Physiology and Behavior, 1994, 55, 201-207.	1.0	10
70	Potential Role of Neuropeptide Ligands in the Treatment of Overeating. CNS Drugs, 1997, 7, 419-426.	2.7	10
71	Effect of repeated administration of dexfenfluramine on feeding and brain Fos in mice. Physiology and Behavior, 2003, 78, 295-301.	1.0	10
72	Comparison of voluntary and foraging running wheel activity on food demand in mice. Physiology and Behavior, 2011, 102, 22-29.	1.0	10

#	Article	IF	CITATIONS
73	Role of estrogen receptorâ€Î± on food demand elasticity. Journal of the Experimental Analysis of Behavior, 2015, 103, 553-561.	0.8	10
74	LiCl-induced flavor avoidance compared between rats and mice using a nondeprivation protocol. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R260-R268.	0.9	9
75	Characteristics of salt appetite in chronically sodium-depleted rats using a progressive ratio schedule of procurement. Physiology and Behavior, 2006, 88, 433-442.	1.0	9
76	Differences in temporal aspects of food acquisition between rats and two strains of mice in a closed operant economy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R93-R108.	0.9	9
77	Neural activity and meal-associated drinking in rats. Neuroscience Letters, 1995, 189, 125-127.	1.0	8
78	The effects of noncontingent and self-administered cytisine on body weight and meal patterns in male Sprague–Dawley rats. Pharmacology Biochemistry and Behavior, 2013, 110, 192-200.	1.3	8
79	Restricted temporal access to food and anorexia in mice: Microstructure of eating within feeding opportunities. Appetite, 2016, 96, 621-627.	1.8	8
80	Relationship between anorexia and loss of serotonin uptake sites in brain of mice and rats receiving d-norfenfluramine or d-fenfluramine. Pharmacology Biochemistry and Behavior, 2004, 77, 541-546.	1.3	7
81	Nicotine analog inhibition of nicotine self-administration in rats. Psychopharmacology, 2008, 199, 605-613.	1.5	7
82	Analytic and Interpretational Pitfalls to Measuring Fecal Corticosterone Metabolites in Laboratory Rats and Mice. Comparative Medicine, 2019, 69, 337-349.	0.4	7
83	Feeding patterns in rats on restricted access schedules: Palatability, bulk, and other determinants of intake. Bulletin of the Psychonomic Society, 1975, 5, 306-308.	0.2	6
84	ROLE OF ANGIOTENSIN II AND THE SUBFORNICAL ORGAN IN THE PHARMACOLOGICAL ACTIONS OF ETHANOL. Alcohol and Alcoholism, 2004, 39, 410-417.	0.9	6
85	Sodium preference and appetite in rats in an operant protocol. Physiology and Behavior, 2005, 83, 715-721.	1.0	6
86	Ontogeny of preference and aversion to salt in Fischer 344 rats and syrian hamsters. Developmental Psychobiology, 1991, 24, 211-218.	0.9	5
87	Flavor avoidance induced by LiCl and dexfenfluramine in rats and mice using nondeprivation protocols Behavioral Neuroscience, 2002, 116, 777-784.	0.6	5
88	Sodium appetite induced in rats by chronic administration of a thiazide diuretic. Physiology and Behavior, 2003, 79, 613-619.	1.0	5
89	Selection of a palatable dietary option is not preferentially reduced by cannabinoid CB1 receptor antagonist AM251 in female C57Bl/6J mice. Pharmacology Biochemistry and Behavior, 2009, 94, 119-123.	1.3	5
90	Structure of motivation using food demand in mice. Physiology and Behavior, 2011, 104, 15-19.	1.0	5

#	Article	IF	CITATIONS
91	Economics of food intake in mice: Energy yield of the reinforcer. Physiology and Behavior, 2014, 136, 104-110.	1.0	5
92	Effect of day-night cycle on distribution of food intake and economic choice among imposed food opportunities in mice. Physiology and Behavior, 2016, 164, 395-399.	1.0	5
93	Role of Angiotensin II Receptors in Tail Skin Temperature Response to Isoproterenol. Experimental Biology and Medicine, 1993, 203, 157-162.	1.1	4
94	Perinatal dietary NaCl level: effect on angiotensin-induced thermal and dipsogenic responses in adult rats. Physiology and Behavior, 2001, 72, 621-627.	1.0	4
95	Effects of price and pellet type on food waste in mice. Behavioural Processes, 2014, 103, 180-183.	0.5	3
96	A rodent model of caloric restriction using bone mass, microarchitecture, andÂstable isotope ratios: implications for revealing chronic food insufficiency in archaeological populations. Science and Technology of Archaeological Research, 2017, 3, 100-111.	2.4	3
97	Animal Models of Overeating. Methods in Molecular Biology, 2012, 829, 367-375.	0.4	3
98	Feeding behaviour: Caused by, or just correlated with, physiology?. Behavioral and Brain Sciences, 1981, 4, 589-590.	0.4	2
99	Dietary NaCl during pregnancy and lactation: Effect on brain angiotensin II receptors and behavior Behavioral Neuroscience, 1999, 113, 1090-1094.	0.6	2
100	The vagus nerve and thirst. Physiology and Behavior, 2004, 82, 75-80.	1.0	2
101	Circadian and economic factors affect food acquisition in rats restricted to discrete feeding opportunities. Physiology and Behavior, 2017, 181, 10-15.	1.0	2
102	Cost-based anorexia: A novel framework to model anorexia nervosa. Appetite, 2018, 130, 50-58.	1.8	2
103	Restricted Temporal Access to Food and Anorexia: Modeling Systems. , 2019, , 551-565.		2
104	Flavor avoidance induced by LiCl and dexfenfluramine in rats and mice using nondeprivation protocols Behavioral Neuroscience, 2002, 116, 777-784.	0.6	2
105	Interactive Effects of Neurochemicals on Ingestive Behavior. Nutritional Neuroscience, 2000, 3, 161-172.	1.5	1
106	Anorectic effect of dehydroepiandrosterone combined with dexfenfluramine or thionisoxetine. European Journal of Pharmacology, 2001, 419, 61-64.	1.7	1
107	Action of a serotonergic anorectic in meal-fed mice working for food. Behavioural Pharmacology, 2012, 23, 560-566.	0.8	1
108	Temporal relationships between food acquisition and voluntary exercise in mice. Behavioural Processes, 2017, 145, 37-43.	0.5	1

0

#	Article	IF	CITATIONS
109	Effect of Food Predictability on Life Span in Male Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1158-1161.	1.7	1
110	The behavioral pharmacology of ingestive behavior. Handbook of Behavioral Neuroscience, 1993, 10, 561-574.	0.0	1
111	Appetitive and Consummatory Aspects of Food Intake in Rodents. , 2008, , 43-59.		1
112	Of rats and men. Behavioral and Brain Sciences, 1985, 8, 346-346.	0.4	0
113	Caloric Compensation in Response to Beer Consumption. , 2009, , 499-504.		Ο
114	Introduction to Quo Vadis Behavioral Neuroscience: A Festschrift for Philip Teitelbaum. Behavioural Brain Research, 2012, 231, 231-232.	1.2	0
115	Hunger and Eating, Neural Basis of. , 2015, , 420-422.		Ο
116	Protocols Using Rodents to Model Eating Disorders in Humans. Methods in Molecular Biology, 2019, 2011, 315-328.	0.4	0
117	High fat diet does not affect ADMA levels or ADMA regulatory enzymes in female Borderline Hypertensive Rats (BHR). FASEB Journal, 2009, 23, 1014.1.	0.2	0

118 Restricted Temporal Access to Food and Anorexia: Modelling Systems. , 2017, , 1-15.