List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1243726/publications.pdf Version: 2024-02-01

ΗΙΡΟSΗΙ ΜΟΡΙΤΛ

#	Article	IF	CITATIONS
1	Coarse-Grained Molecular Dynamics Study of Styrene- <i>block</i> -isoprene- <i>block</i> -styrene Thermoplastic Elastomer Blends. ACS Applied Polymer Materials, 2022, 4, 2401-2413.	4.4	6
2	Analysis of nanocellular foaming with nucleating agents based on coarse-grained molecular dynamics simulations. Polymer, 2022, 254, 125059.	3.8	3
3	Nanoscale Stress Distribution in Silica-Nanoparticle-Filled Rubber as Observed by Transmission Electron Microscopy: Implications for Tire Application. ACS Applied Nano Materials, 2021, 4, 4452-4461.	5.0	21
4	Rheological Properties of Lamellaeâ€Forming Diblock Copolymers. Advanced Theory and Simulations, 2021, 4, 2100097.	2.8	0
5	Recoverably and destructively deformed domain structures in elongation process of thermoplastic elastomer analyzed by graph theory. Polymer, 2020, 188, 122098.	3.8	15
6	Analysis of Nanomechanical Properties of Polyethylene Using Molecular Dynamics Simulation. Macromolecules, 2020, 53, 6163-6172.	4.8	7
7	Effects of polymer/filler interactions on glass transition temperatures of filler-filled polymer nanocomposites. Polymer, 2019, 178, 121615.	3.8	19
8	Simulation Study of the Effects of Nanoporous Structures on Mechanical Properties at Polymer–Metal Interfaces. Journal of Physical Chemistry B, 2019, 123, 1161-1170.	2.6	9
9	Direct three-dimensional imaging of the fracture of fiber-reinforced plastic under uniaxial extension: Effect of adhesion between fibers and matrix. Polymer, 2017, 116, 556-564.	3.8	7
10	Evaporation from Polymer Solution. , 2016, , 297-304.		0
11	Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer, 2016, 99, 368-375.	3.8	53
12	Glass Transition at the Surface and Interface. , 2016, , 291-296.		0
13	Lithography. , 2016, , 389-396.		1
14	Analysis of the end-segment distribution of a polymer at the interface of filler-filled material. Polymer Journal, 2016, 48, 451-455.	2.7	2
15	Lithography process simulation studies using coarse-grained polymer models. Polymer Journal, 2016, 48, 45-50.	2.7	6
16	Coarse-Grained Molecular Dynamics Simulation of Filled Polymer Nanocomposites under Uniaxial Elongation. Macromolecules, 2016, 49, 1972-1983.	4.8	85
17	Analysis of the self-assembling and the defect annihilation processes in DSA using meso-scale simulation. , 2015, , .		1
18	Development of fast DSA simulation method using OCTA system. Proceedings of SPIE, 2014, , .	0.8	2

#	Article	IF	CITATIONS
19	Lithography Process Simulations using OCTA -Application to Development and DSA. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 25-29.	0.3	4
20	Uptake of water in as-spun poly(methyl methacrylate) thin films. RSC Advances, 2013, 3, 3516.	3.6	10
21	Relaxation of polystyrene at interface with solid substrate. , 2013, , .		1
22	Applicable Simulation Methods for Directed Self-Assembly -Advantages and Disadvantages of These Methods. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 801-807.	0.3	7
23	Mesoscale simulation of the line-edge structure during positive and negative tone resist development process. , 2012, , .		4
24	Local Conformation and Relaxation of Polystyrene at Substrate Interface. Macromolecules, 2012, 45, 4643-4649.	4.8	95
25	Mobility Gradient of Polystyrene in Films Supported on Solid Substrates. Advances in Polymer Science, 2012, , 1-27.	0.8	Ο
26	Single chain distribution analysis near a substrate using a combined method of three-dimensional imaging and SCF simulation. European Polymer Journal, 2011, 47, 685-691.	5.4	1
27	Meso-scale simulation of the line-edge structure based on resist polymer molecules by negative-tone process. Proceedings of SPIE, 2011, , .	0.8	3
28	Meso-scale simulation of the line-edge structure based on polymer chains in the developing and rinse process. Proceedings of SPIE, 2010, , .	0.8	3
29	Mesoscale simulation of line-edge structures based on polymer chains in development and rinse processes. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2010, 9, 041213.	0.9	4
30	Swelling Structure of Thin Poly(methyl methacrylate) Films in Various Alkyl Length Alcohols. Journal of Physical Chemistry Letters, 2010, 1, 881-885.	4.6	21
31	Coarse-grained Molecular Dynamics Simulation Study of Nanorheology and Nanotribology. Nihon Reoroji Gakkaishi, 2009, 37, 105-111.	1.0	4
32	Effect of the Contact Line Motion in the Adhesion of Very Soft Sphere. Journal of the Physical Society of Japan, 2009, 78, 114802.	1.6	2
33	Interfacial Mobility of Polymers on Inorganic Solids. Journal of Physical Chemistry B, 2009, 113, 4571-4577.	2.6	106
34	Meso-scale simulation of the polymer dynamics in the formation process of line-edge roughness. , 2009, , .		4
35	Slippage of a Droplet of Polymer Solution on a Glass Substrate. Journal of the Physical Society of Japan, 2009, 78, 014804.	1.6	7
36	Three-Dimensional Visualization of a Single Block Copolymer in Lamellar Nanodomains. Macromolecules, 2008, 41, 4845-4849.	4.8	17

#	Article	IF	CITATIONS
37	Contact Dynamics in the Adhesion Process between Spherical Polydimethylsiloxane Rubber and Glass Substrate. Langmuir, 2008, 24, 14059-14065.	3.5	16
38	A Transition from Cylindrical to Spherical Morphology in Diblock Copolymer Thin Films. Macromolecules, 2008, 41, 9318-9325.	4.8	32
39	Dynamics of Adhesion between the Spherical PDMS Rubber and the Glass Substrate. AIP Conference Proceedings, 2008, , .	0.4	Ο
40	Recent Advances in Transmission Electron Microtomography for Polymer Research. Kobunshi Ronbunshu, 2008, 65, 547-561.	0.2	5
41	In-situObservation of Lubrication Dynamics between Soft Elastomer and Glass Substrate. Journal of the Physical Society of Japan, 2008, 77, 014602.	1.6	1
42	Dissipative Particle Dynamics Study for the Phase Separated Structures of Polymer Thin Film Caused by Solvent Evaporation. Nihon Reoroji Gakkaishi, 2008, 36, 93-98.	1.0	15
43	Title is missing!. Journal of the Japan Society of Colour Material, 2008, 81, 207-211.	0.1	0
44	Molecular Dynamics Study of the Adhesion between End-Grafted Polymer Films II —Effect of Grafting Density—. Polymer Journal, 2007, 39, 73-80.	2.7	14
45	1 ç«ã€€é«~å^†åææ—™ã®æŽ¥å•̀・èžç€ã«ã®"ã┥. Seikei-Kakou, 2007, 19, 705-710.	0.0	0
46	Study of the Glass Transition Temperature of Polymer Surface by Coarse-Grained Molecular Dynamics Simulation. Macromolecules, 2006, 39, 6233-6237.	4.8	132
47	Modeling on debonding dynamics of pressure-sensitive adhesives. European Physical Journal E, 2006, 20, 7-17.	1.6	48
48	Molecular Dynamics Study of the Adhesion between End-grafted Polymer Films. Polymer Journal, 2005, 37, 782-788.	2.7	19
49	Structural Analysis of Soft Matters Using Three Dimensional Virtual Imaging Experiments. Kobunshi Ronbunshu, 2005, 62, 502-507.	0.2	1
50	Phase Separated Structures in a Binary Blend of Diblock Copolymers under an Extensional Force Field –Helical Domain Structure–. Journal of the Physical Society of Japan, 2004, 73, 1371-1374.	1.6	13
51	Study of Nanorheology and Nanotribology by Coarse-grained Molecular Dynamics Simulation. Polymer Journal, 2004, 36, 265-269.	2.7	17
52	Competition between Micro- and Macrophase Separations in a Binary Mixture of Block Copolymers. A Dynamic Density Functional Study. Macromolecules, 2002, 35, 7473-7480.	4.8	30
53	Dynamic Density Functional Study on the Structure of Thin Polymer Blend Films with a Free Surface. Macromolecules, 2001, 34, 8777-8783.	4.8	82
54	Nonequilibrium helical-domain morphology in diblock copolymer systems. Polymer, 2001, 42, 8477-8481.	3.8	10

#	Article	IF	CITATIONS
55	Effects of A-B Block Copolymer Additives on Interfacial Tension of A/B Polymer Blends Near the Critical Temperature: Comparison of Mean-Field Calculations with Experiments. Macromolecular Chemistry and Physics, 2001, 202, 1548-1556.	2.2	2
56	Effects of low-molecular-weight additives on interfacial tension of polymer blends: experiments for poly(tetramethyldisiloxanylethylene)+oligo(dimethylsiloxane), and comparison with mean-field calculations. Polymer, 2001, 42, 3883-3891.	3.8	7
57	Visualized Polymers. Patterns Formed by Polymeric Systems. I. Dynamic Density Functional Study of Structures of Thin Polymer Blend Films Kobunshi Ronbunshu, 1999, 56, 674-683.	0.2	2
58	Visualized Polymers. Patterns Formed by Polymeric Systems. II. Dynamic Mean Field Theory for Mesoscale Polymer Simulations Kobunshi Ronbunshu, 1999, 56, 762-771.	0.2	1
59	Electronic Structures of MoF6 and MoOF4 in the Ground and Excited States: A SAC-CI and Frozen-Orbital-Analysis Study. Journal of Physical Chemistry A, 1998, 102, 2033-2043.	2.5	18
60	Electronic structures of the ground and excited states of Mo(CO)6: SAC-CI calculation and frozen orbital analysis. Molecular Physics, 1997, 92, 523-534.	1.7	3
61	Theoretical study on the photostimulated desorption of CO from a Pt surface. Journal of Chemical Physics, 1996, 104, 714-726.	3.0	38
62	Theoretical Study of the Ionized Electronic Structure of the Octahedral Complex MoF6. Bulletin of the Chemical Society of Japan, 1996, 69, 1893-1899.	3.2	4
63	Frozen-Orbital Analysis of the Excited States of Metal Complexes in High Symmetry:  Oh Case. The Journal of Physical Chemistry, 1996, 100, 15753-15759.	2.9	14
64	Dipped adcluster model and SAC-CI method applied to harpooning, chemiluminescence and electron emission in halogen chemisorption on alkali metal surface. Journal of Molecular Catalysis, 1993, 82, 211-228.	1.2	15