
Thomas J Abbruscato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1243672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological determinants impact the neurovascular toxicity of nicotine and tobacco smoke: A pharmacokinetic and pharmacodynamics perspective. NeuroToxicology, 2022, 89, 140-160.	3.0	15
2	In-Vivo and Ex-Vivo Brain Uptake Studies of Peptidomimetic Neurolysin Activators in Healthy and Stroke Animals. Pharmaceutical Research, 2022, 39, 1587-1598.	3.5	6
3	Structure-activity relationship studies of functionalized aromatic peptidomimetics as neurolysin activators. Bioorganic and Medicinal Chemistry Letters, 2022, 64, 128669.	2.2	2
4	Effects of Nicotine Exposure From Tobacco Products and Electronic Cigarettes on the Pathogenesis of Neurological Diseases: Impact on CNS Drug Delivery. Frontiers in Drug Delivery, 2022, 2, .	1.6	3
5	Prenatal Eâ€Cigarette Use Disrupts Bloodâ€Brain Barrier (BBB) Integrity and Induces Proâ€Inflammatory Cytokines in Postnatal Brain. FASEB Journal, 2022, 36, .	0.5	0
6	Small molecule neurolysin activators, potential multi-mechanism agents for ischemic stroke therapy. Expert Opinion on Therapeutic Targets, 2022, 26, 401-404.	3.4	3
7	Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids and Barriers of the CNS, 2022, 19,	5.0	13
8	Comparative assessment of in vitro BBB tight junction integrity following exposure to cigarette smoke and e-cigarette vapor: a quantitative evaluation of the protective effects of metformin using small-molecular-weight paracellular markers. Fluids and Barriers of the CNS, 2021, 18, 28.	5.0	13
9	Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sciences, 2021, 274, 119343.	4.3	33
10	Identification and Characterization of Two Structurally Related Dipeptides that Enhance Catalytic Efficiency of Neurolysin. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 191-202.	2.5	8
11	Discovery of First-in-Class Peptidomimetic Neurolysin Activators Possessing Enhanced Brain Penetration and Stability. Journal of Medicinal Chemistry, 2021, 64, 12705-12722.	6.4	10
12	Glutamate Buffering Capacity and Blood-Brain Barrier Protection of Opioid Receptor Agonists Biphalin and Nociceptin. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 260-269.	2.5	4
13	Peptidase neurolysin functions to preserve the brain after ischemic stroke in male mice. Journal of Neurochemistry, 2020, 153, 120-137.	3.9	22
14	Prenatal electronic cigarette exposure decreases brain glucose utilization and worsens outcome in offspring hypoxic–ischemic brain injury. Journal of Neurochemistry, 2020, 153, 63-79.	3.9	22
15	The Role of Smoking and Nicotine in the Transmission and Pathogenesis of COVID-19. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 498-509.	2.5	26
16	Estimating Brain Permeability Using In Vitro Blood-Brain Barrier Models. Methods in Molecular Biology, 2020, 2367, 47-72.	0.9	17
17	Novel approaches for the delivery of therapeutics in ischemic stroke. Drug Discovery Today, 2020, 25, 535-551.	6.4	32
18	Exosomes in Ischemic Stroke. Current Pharmaceutical Design, 2020, 26, 5533-5545.	1.9	10

Thomas J Abbruscato

#	Article	IF	CITATIONS
19	Discovery of novel compound promotes neurogenesis by activation of mTOR signaling. FASEB Journal, 2020, 34, 1-1.	0.5	0
20	Brain Delivery of a Potent Opioid Receptor Agonist, Biphalin during Ischemic Stroke: Role of Organic Anion Transporting Polypeptide (OATP). Pharmaceutics, 2019, 11, 467.	4.5	27
21	Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. American Journal of Physiology - Cell Physiology, 2019, 316, C2-C15.	4.6	19
22	Role of Myo â€inositol in Ischemic Stroke Outcome in a Preclinical Tobacco Smoke Exposed Mouse Model. FASEB Journal, 2019, 33, 500.2.	0.5	0
23	The neuroprotective role of the brain opioid system in stroke injury. Drug Discovery Today, 2018, 23, 1385-1395.	6.4	23
24	DARK Classics in Chemical Neuroscience: Methamphetamine. ACS Chemical Neuroscience, 2018, 9, 2373-2378.	3.5	38
25	Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Research, 2018, 1699, 166-176.	2.2	17
26	Nicotine and electronic cigarette (E ig) exposure decreases brain glucose utilization in ischemic stroke. Journal of Neurochemistry, 2018, 147, 204-221.	3.9	47
27	Role of Myoâ€inositol in Ischemic Stroke Outcome in a Type 2 Diabetic Mouse Model. FASEB Journal, 2018, 32, .	0.5	1
28	Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biology, 2017, 12, 58-69.	9.0	116
29	Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. AAPS Journal, 2017, 19, 957-972.	4.4	130
30	Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: Is Metformin a viable countermeasure?. Redox Biology, 2017, 13, 353-362.	9.0	90
31	Enkephalin-Fentanyl Multifunctional Opioids as Potential Neuroprotectants for Ischemic Stroke Treatment. Current Pharmaceutical Design, 2017, 22, 6459-6468.	1.9	19
32	Preparation and preliminary characterization of recombinant neurolysin for in vivo studies. Journal of Biotechnology, 2016, 234, 105-115.	3.8	19
33	Peptides at the blood brain barrier: Knowing me knowing you. Peptides, 2015, 72, 50-56.	2.4	10
34	In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment. Brain Research, 2015, 1609, 1-11.	2.2	32
35	Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood–brain barrier in mice. Fluids and Barriers of the CNS, 2015, 12, 10.	5.0	27
36	Drug Abuse and the Neurovascular Unit. Advances in Pharmacology, 2014, 71, 451-480.	2.0	13

THOMAS J ABBRUSCATO

#	Article	IF	CITATIONS
37	Functional upâ€regulation of endopeptidase neurolysin during postâ€acute and early recovery phases of experimental stroke in mouse brain. Journal of Neurochemistry, 2014, 129, 179-189.	3.9	38
38	The Role of Blood-Brain Barrier Transporters in Pathophysiology and Pharmacotherapy of Stroke. Current Pharmaceutical Design, 2014, 20, 1510-1522.	1.9	37
39	The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer's Disease. International Journal of Molecular Sciences, 2012, 13, 12629-12655.	4.1	204
40	In Vitro Models of the Blood–Brain Barrier. Methods in Molecular Biology, 2012, 814, 431-449.	0.9	12
41	Upregulation of membraneâ€bound metalloendopeptidase neurolysin in a mouse model of focal brain ischemia. FASEB Journal, 2012, 26, 852.6.	0.5	0
42	Opioid receptor agonists reduce brain edema in stroke. Brain Research, 2011, 1383, 307-316.	2.2	65
43	Characterization of Neuroprotective Effects of Biphalin, an Opioid Receptor Agonist, in a Model of Focal Brain Ischemia. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 499-508.	2.5	42
44	Nicotine Exacerbates Brain Edema during In Vitro and In Vivo Focal Ischemic Conditions. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 371-379.	2.5	70
45	A Functional Role for Sodium-Dependent Glucose Transport across the Blood-Brain Barrier during Oxygen Glucose Deprivation. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 487-495.	2.5	108
46	Neuroprotection in mice by NGP1-01 after transient focal brain ischemia. Brain Research, 2008, 1196, 113-120.	2.2	49
47	Role of Sodium Glucose Transporter in High Glucose Mediated Angiotensin Type 1 receptor Downâ€regulation in Human Proximal Tubule Cells. FASEB Journal, 2008, 22, 736.1.	0.5	0
48	Evaluation of bEnd5 cell line as an in vitro model for the blood–brain barrier under normal and hypoxic/aglycemic conditions. Journal of Pharmaceutical Sciences, 2007, 96, 3196-3213.	3.3	46
49	Protein Kinase C Family Members as a Target for Regulation of Blood–Brain Barrier Na,K,2Cl-Cotransporter During In Vitro Stroke Conditions and Nicotine Exposure. Pharmaceutical Research, 2006, 23, 291-302.	3.5	32
50	Tobacco Smoke Chemicals Attenuate Brain-to-Blood Potassium Transport Mediated by the Na,K,2Cl-Cotransporter during Hypoxia-Reoxygenation. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 248-254.	2.5	39
51	NGP1-01, a lipophilic polycyclic cage amine, is neuroprotective in focal ischemia. Neuroscience Letters, 2005, 383, 49-53.	2.1	75
52	Regulation of Blood-Brain Barrier Na,K,2Cl-Cotransporter through Phosphorylation during in Vitro Stroke Conditions and Nicotine Exposure. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 459-468.	2.5	72
53	Nicotine increases in vivo blood–brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Research, 2004, 1027, 48-58.	2.2	187
54	Nicotine and Cotinine Modulate Cerebral Microvascular Permeability and Protein Expression of ZO-1 through Nicotinic Acetylcholine Receptors Expressed on Brain Endothelial Cells. Journal of Pharmaceutical Sciences, 2002, 91, 2525-2538.	3.3	149

#	Article	IF	CITATIONS
55	Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: influence of astrocyte contact. Brain Research, 1999, 842, 277-286.	2.2	94
56	Transport of Opioid Peptides into the Central Nervous System. Journal of Pharmaceutical Sciences, 1998, 87, 1433-1439.	3.3	56
57	Brain and Spinal Cord Distribution of Biphalin: Correlation with Opioid Receptor Density and Mechanism of CNS Entry. Journal of Neurochemistry, 1997, 69, 1236-1245.	3.9	53