Colin Adrain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1243417/publications.pdf

Version: 2024-02-01

236925 276875 4,744 44 25 41 h-index citations g-index papers 49 49 49 6014 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondria shed their outer membrane in response to infection-induced stress. Science, 2022, 375, eabi4343.	12.6	42
2	EMC is required for biogenesis of Xportâ€A, anÂessential chaperone of Rhodopsinâ€1 and the TRPÂchannel. EMBO Reports, 2022, 23, e53210.	4.5	4
3	Systemic and cellular metabolism: the cause of and remedy for disease?. FEBS Journal, 2021, 288, 3624-3627.	4.7	2
4	Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Molecular Metabolism, 2020, 31, 67-84.	6.5	25
5	The complex life of rhomboid pseudoproteases. FEBS Journal, 2020, 287, 4261-4283.	4.7	11
6	Pseudoenzymes: dead enzymes with a lively role in biology. FEBS Journal, 2020, 287, 4102-4105.	4.7	7
7	iRhom2 and TNF: Partners or enemies?. Science Signaling, 2019, 12, .	3.6	6
8	Meeting Report – proteostasis in Ericeira. Journal of Cell Science, 2018, 131, .	2.0	0
9	iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. ELife, 2018, 7, .	6.0	47
10	Phosphorylation of iRhom2 Controls Stimulated Proteolytic Shedding by the Metalloprotease ADAM17/TACE. Cell Reports, 2017, 21, 745-757.	6.4	86
11	Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis. Scientific Reports, 2017, 7, 7283.	3.3	39
12	Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. Cell Death and Disease, 2017, 8, e3176-e3176.	6.3	19
13	Inactive rhomboid proteins: New mechanisms with implications in health and disease. Seminars in Cell and Developmental Biology, 2016, 60, 29-37.	5.0	29
14	Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGF \hat{l}_{\pm} . Scientific Reports, 2016, 6, 27342.	3.3	39
15	Regulation of Receptor Tyrosine Kinase Ligand Processing. Cold Spring Harbor Perspectives in Biology, 2014, 6, a008995-a008995.	5 . 5	25
16	Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Reports, 2013, 14, 884-890.	4.5	120
17	Tumor Necrosis Factor Signaling Requires iRhom2 to Promote Trafficking and Activation of TACE. Science, 2012, 335, 225-228.	12.6	344
18	New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nature Reviews Molecular Cell Biology, 2012, 13, 489-498.	37.0	137

#	Article	IF	Citations
19	Rhomboid Family Pseudoproteases Use the ER Quality Control Machinery to Regulate Intercellular Signaling. Cell, 2011, 145, 79-91.	28.9	143
20	Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Reports, 2011, 12, 421-427.	4.5	103
21	Apoptosis: Calling Time on Apoptosome Activity. Science Signaling, 2009, 2, pe62.	3.6	9
22	Bicaudal Is a Conserved Substrate for Drosophila and Mammalian Caspases and Is Essential for Cell Survival. PLoS ONE, 2009, 4, e5055.	2.5	13
23	Human and murine granzyme B exhibit divergent substrate preferences. Journal of Cell Biology, 2007, 176, 435-444.	5.2	117
24	Human and murine granzyme B exhibit divergent substrate preferences. Journal of Experimental Medicine, 2007, 204, i4-i4.	8.5	0
25	CELL BIOLOGY: Double Knockout Blow for Caspases. Science, 2006, 311, 785-786.	12.6	16
26	Role for CED-9 and Egl-1 as Regulators of Mitochondrial Fission and Fusion Dynamics. Molecular Cell, 2006, 21, 761-773.	9.7	181
27	Apoptosomes: protease activation platforms to die from. Trends in Biochemical Sciences, 2006, 31, 243-247.	7.5	21
28	The Cytotoxic Lymphocyte Protease, Granzyme B, Targets the Cytoskeleton and Perturbs Microtubule Polymerization Dynamics. Journal of Biological Chemistry, 2006, 281, 8118-8125.	3.4	75
29	Proteases, proteasomes and apoptosis: breaking Ub is hard to do. Cell Death and Differentiation, 2005, 12, 1213-1217.	11.2	12
30	Molecular Ordering of the Caspase Activation Cascade Initiated by the Cytotoxic T Lymphocyte/Natural Killer (CTL/NK) Protease Granzyme B. Journal of Biological Chemistry, 2005, 280, 4663-4673.	3.4	125
31	Pro-apoptotic Proteins Released from the Mitochondria Regulate the Protein Composition and Caspase-processing Activity of the Native Apaf-1/Caspase-9 Apoptosome Complex. Journal of Biological Chemistry, 2004, 279, 19665-19682.	3.4	94
32	Caspase-dependent Inactivation of Proteasome Function during Programmed Cell Death in Drosophila and Man. Journal of Biological Chemistry, 2004, 279, 36923-36930.	3.4	59
33	Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO Journal, 2004, 23, 2134-2145.	7.8	241
34	Defying death: showing Bcl-2 the way home. Nature Cell Biology, 2003, 5, 9-11.	10.3	8
35	The Apoptosome Pathway to Caspase Activation in Primary Human Neutrophils Exhibits Dramatically Reduced Requirements for Cytochrome c. Journal of Experimental Medicine, 2003, 197, 625-632.	8.5	96
36	Portrait of a Killer: The Mitochondrial Apoptosome Emerges From the Shadows. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 19-26.	3.4	76

#	Article	IF	CITATION
37	Executioner Caspase-3, -6, and -7 Perform Distinct, Non-redundant Roles during the Demolition Phase of Apoptosis. Journal of Biological Chemistry, 2001, 276, 7320-7326.	3.4	892
38	Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO Journal, 2001, 20, 6627-6636.	7.8	386
39	Search for Drosophila caspases bears fruit: STRICA enters the fray. Cell Death and Differentiation, 2001, 8, 319-323.	11.2	9
40	The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends in Biochemical Sciences, 2001, 26, 390-397.	7.5	474
41	CARDINAL, a Novel Caspase Recruitment Domain Protein, Is an Inhibitor of Multiple NF-κB Activation Pathways. Journal of Biological Chemistry, 2001, 276, 44069-44077.	3.4	100
42	Regulation of Apoptotic Protease Activating Factor-1 Oligomerization and Apoptosis by the WD-40 Repeat Region. Journal of Biological Chemistry, 1999, 274, 20855-20860.	3.4	98
43	Serial killers: ordering caspase activation events in apoptosis. Cell Death and Differentiation, 1999, 6, 1067-1074.	11.2	411
44	Phosphorylation of iRhom2 Is Essential for Stimulated Proteolytic Shedding by the Metalloprotease ADAM17/TACE. SSRN Electronic Journal, 0, , .	0.4	0