Fabrice Mutelet

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/124330/fabrice-mutelet-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71 2,513 30 49 g-index

72 2,789 4.1 5.33 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
71	Extraction of organic compounds from Aqueous Solution Using Choline bis (trifluoromethylsulfonyl) imide. <i>Journal of Molecular Liquids</i> , 2022 , 360, 119432	6	
70	Evaluation of miscanthus pretreatment effect by Choline chloride based Deep Eutectic solvents on bioethanol production. <i>Bioresource Technology</i> , 2021 , 345, 126460	11	1
69	Extraction of butanol and acetonitrile from aqueous solution using carboxylic acid based deep eutectic solvents. <i>Journal of Molecular Liquids</i> , 2021 , 325, 115231	6	3
68	Thermodynamic Properties of Tricyanomethanide-Based Ionic Liquids with Water: Experimental and Modelling. <i>Journal of Solution Chemistry</i> , 2021 , 50, 517-543	1.8	1
67	Solubility of Carbon Dioxide in Carboxylic Acid-Based Deep Eutectic Solvents. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 702-711	2.8	2
66	Characterization of the solubilizing ability of short-chained glycol-grafted ammonium and phosphonium ionic liquids. <i>Journal of Molecular Liquids</i> , 2020 , 304, 112786	6	6
65	Effect of the Addition of Amine in Organophosphorus Compounds on Molecular Structuration of Ionic Liquids-Application to Solvent Extraction. <i>Molecules</i> , 2020 , 25,	4.8	4
64	Development of Abraham model correlations for short-chain glycol-grafted imidazolium and pyridinium ionic liquids from inverse gas-chromatographic measurements. <i>Journal of Molecular Liquids</i> , 2020 , 317, 113983	6	5
63	Thermodynamic properties assessment of working mixtures (water + alkylphosphonate based ionic liquids) as innovative alternatives working pairs for absorption heat transformers. <i>Applied Thermal Engineering</i> , 2020 , 181, 115943	5.8	8
62	Characterization of bis(fluorosulfonyl)imide based ionic liquids by gas chromatography. <i>Journal of Molecular Liquids</i> , 2019 , 289, 111169	6	5
61	Characterization of the solubilizing ability of tetraalkylammonium ionic liquids containing a pendant alkyl chain bearing a basic N,N-dimethylamino or N,N-dimethylaminoethoxy functionality. <i>Journal of Molecular Liquids</i> , 2019 , 283, 380-390	6	14
60	Separation of phenols from lignin pyrolysis oil using ionic liquid. <i>Separation and Purification Technology</i> , 2019 , 209, 528-534	8.3	30
59	Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-sec-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and in 1-tert-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. <i>Physics and Chemistry of Liquids</i>	1.5	21
58	Doxorubicin-Loaded Thermoresponsive Superparamagnetic Nanocarriers for Controlled Drug Delivery and Magnetic Hyperthermia Applications. <i>ACS Applied Materials & Delivery and Magnetic Hyperthermia Applications</i> . <i>ACS Applied Materials & Delivery and Magnetic Hyperthermia Applications</i> .)6 ⁹ 0 ⁵ -3(0628
57	Antioxidant properties of phenolic surrogates of lignin depolymerisation. <i>Industrial Crops and Products</i> , 2019 , 129, 480-487	5.9	17
56	Computational study of phenolic compounds-water clusters. Structural Chemistry, 2018, 29, 625-643	1.8	1
55	Infinite Dilution Activity Coefficients and Gas-to-Liquid Partition Coefficients of Organic Solutes Dissolved in 1-Benzylpyridinium Bis(Trifluoromethylsulfonyl)Imide and 1-Cyclohexylmethyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)Imide. <i>Journal of Solution</i>	1.8	25

(2015-2018)

54	Carbon dioxide solubilities in tricyanomethanide-based ionic liquids: Measurements and PC-SAFT modeling. <i>Fluid Phase Equilibria</i> , 2018 , 469, 48-55	2.5	14
53	Computational study on the molecular conformations of phenolic compounds. <i>Structural Chemistry</i> , 2018 , 29, 179-194	1.8	8
52	Capacity Enhancement of Ionic Liquids-Based Nanofluid for Fuels Desulfurization Purposes. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 14718-14726	3.9	9
51	Extraction of phenolic compounds from aqueous solution using choline bis(trifluoromethylsulfonyl)imide. <i>Fluid Phase Equilibria</i> , 2017 , 446, 28-35	2.5	33
50	Liquid[liquid Equilibria for the Ternary Systems Dodecane + Toluene or Thiophene or Pyridine + 1-Ethyl-3-methylimidazolium Methyl Sulfate. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 174	19 ² 175!	59
49	Use of Ionic Liquids for the Treatment of Biomass Materials and Biofuel Production 2017,		1
48	Phase equilibria of phenolic compounds in water or ethanol. Fluid Phase Equilibria, 2017, 453, 58-66	2.5	15
47	Study of benzyl- or cyclohexyl-functionalized ionic liquids using inverse gas chromatography. <i>Journal of Molecular Liquids</i> , 2017 , 242, 550-559	6	28
46	Are Ionic Liquids Suitable as New Components in Working Mixtures for Absorption Heat Transformers? 2017 ,		4
45	Activity coefficients at infinite dilution for organic solutes dissolved in two 1,2,3-tris(diethylamino)cyclopenylium based room temperature ionic liquids. <i>Journal of Molecular Liquids</i> , 2016 , 223, 89-99	6	22
44	Performance of an absorption heat transformer using new working binary systems composed of {ionic liquid and water}. <i>Applied Thermal Engineering</i> , 2016 , 94, 579-589	5.8	40
43	Activity coefficients at infinite dilution for organic solutes dissolved in two 1-alkylquinuclidinium bis(trifluoromethylsulfonyl)imides bearing alkyl side chains of six and eight carbons. <i>Journal of Molecular Liquids</i> , 2016 , 215, 176-184	6	39
42	Infinite dilution activity coefficients of solutes dissolved in anhydrous alkyl(dimethyl)isopropylammonium bis(trifluoromethylsulfonyl)imide ionic liquids containing functionalized- and nonfunctionalized-alkyl chains. <i>Journal of Molecular Liquids</i> , 2016 , 222, 295-312	6	23
41	Measurements of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium ethylphosphonate [EMIM][(EtO)(H)PO2] using gas-liquid chromatography. <i>Journal of Molecular Liquids</i> , 2016 , 220, 243-247	6	20
40	Experimental and theoretical study of carbohydrate-ionic liquid interactions. <i>Carbohydrate Polymers</i> , 2015 , 127, 316-24	10.3	22
39	Phase diagrams of binary systems containing tricyanomethanide-based ionic liquids and thiophene or pyridineNew experimental data and PC-SAFT modelling. <i>Fluid Phase Equilibria</i> , 2015 , 399, 105-114	2.5	19
38	Activity coefficients at infinite dilution of organic solutes in methylphosphonate based ionic liquids using gas-liquid chromatography. <i>Journal of Chemical Thermodynamics</i> , 2015 , 86, 116-122	2.9	13
37	Pretreatment of miscanthus using 1,3-dimethyl-imidazolium methyl phosphonate (DMIMMPh) ionic liquid for glucose recovery and ethanol production. <i>RSC Advances</i> , 2015 , 5, 61455-61464	3.7	19

36	Study of interaction between organic compounds and mono or dicationic oxygenated ionic liquids using gas chromatography. <i>Fluid Phase Equilibria</i> , 2015 , 387, 59-72	2.5	18
35	Experimental and theoretically study of interaction between organic compounds and tricyanomethanide based ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2015 , 85, 49-56	2.9	44
34	Vapor Diquid Equilibria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling. <i>Industrial & amp; Engineering Chemistry Research</i> , 2014 , 53, 3737-3748	3.9	69
33	Infinite Dilution Activity Coefficients of Solutes Dissolved in Two Trihexyl(tetradecyl)phosphonium Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 1877-1885	2.8	34
32	Experimental and theoretical study of interaction between organic compounds and 1-(4-sulfobutyl)-3-methylimidazolium based ionic liquids. <i>Fluid Phase Equilibria</i> , 2014 , 378, 34-43	2.5	7
31	Measurement and correlation of vapour pressures of pyridine and thiophene with [EMIM][SCN] ionic liquid. <i>Journal of Chemical Thermodynamics</i> , 2014 , 72, 134-138	2.9	12
30	Experimental Measurement and Modeling of Phase Diagrams of Binary Systems Encountered in the Gasoline Desulfurization Process Using Ionic Liquids. <i>Journal of Chemical & Data</i> , 2014, 59, 603-612	2.8	22
29	Solubility of carbon dioxide, nitrous oxide and methane in ionic liquids at pressures close to atmospheric. <i>Fluid Phase Equilibria</i> , 2014 , 372, 26-33	2.5	35
28	Aggregation of nanoparticles in aqueous solutions of ionic liquids. <i>Journal of Molecular Liquids</i> , 2013 , 186, 1-6	6	11
27	Solubility of CO2 in 1-butyl-3-methylimidazolium diethylene-glycolmonomethylethersulfate and trihexyl(tetradecyl)phosphonium dodecyl-benzenesulfonate. <i>Fluid Phase Equilibria</i> , 2013 , 354, 191-198	2.5	15
26	Activity Coefficients at Infinite Dilution for Organic Solutes Dissolved in Three 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Bearing Short Linear Alkyl Side Chains of Three to Five Carbons. <i>Journal of Chemical & Chemi</i>	2.8 2218	61
25	From the dissolution to the extraction of carbohydrates using ionic liquids. RSC Advances, 2013, 3, 2021	93.7	18
24	Studies on the dissolution of glucose in ionic liquids and extraction using the antisolvent method. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2013 , 47, 2809-16	10.3	37
23	Activity Coefficients at Infinite Dilution for Organic Compounds Dissolved in 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Having Six-, Eight-, and Ten-Carbon Alkyl Chains. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 3510-3518	2.8	59
22	Evaluation of the Performance of Trigeminal Tricationic Ionic Liquids for Separation Problems. Journal of Chemical & Data, 2012, 57, 918-927	2.8	31
21	Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT equation of state. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 14375-88	3.4	92
20	Extraction of n-Alcohols from n-Heptane Using Ionic Liquids <i>Journal of Chemical & Data</i> , 2011 , 56, 3873-3880	2.8	35
19	Activity Coefficients at Infinite Dilution of Organic Compounds in Four New Imidazolium-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 3106-3114	2.8	72

(2005-2011)

18	Partition Coefficients of Organic Compounds in Four New Tetraalkylammonium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Using Inverse Gas Chromatography. <i>Journal of Chemical & Chemica</i>	2.8	49
17	Deep Fuels Desulfurization and Denitrogenation Using 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate. <i>Energy & Description (Section 2011)</i> , 25, 1559-1565	4.1	77
16	Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids Using a Temperature-Dependent Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 3598-3606	2.8	29
15	Study of Ether-, Alcohol-, or Cyano-Functionalized Ionic Liquids Using Inverse Gas Chromatography. Journal of Chemical & Data, 2010, 55, 2434-2443	2.8	75
14	Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids: Use of a Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 3883-3892	3.9	59
13	Extraction of benzene or thiophene from n-heptane using ionic liquids. NMR and thermodynamic study. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 4600-8	3.4	120
12	High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 12908-13	3.4	107
11	Partition Coefficients of Organic Compounds in New Imidazolium and Tetralkylammonium Based Ionic Liquids Using Inverse Gas Chromatography. <i>Journal of Chemical & Data</i> , 2010, 55, 234-242	2.8	136
10	(Vapor + liquid) equilibria of binary mixtures containing light alcohols and ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 177-181	2.9	20
9	Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. <i>Journal of Chromatography A</i> , 2009 , 1216, 4775-86	4.5	73
8	Extracting capacity of ionic liquids adsorbed at the surface of alumina nanoparticles: Conductimetric and dynamic light scattering studies. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 338, 47-50	5.1	2
7	Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Butyl-3-methylimidazolium Tetrafluoroborate Using Inverse Gas Chromatography. <i>Journal of Chemical & Data</i> , 2009 , 54, 90-101	2.8	76
6	Activity Coefficients at Infinite Dilution of Organic Compounds in Trihexyl(tetradecyl)phosphonium Bis(trifluoromethylsulfonyl)imide Using Inverse Gas Chromatography. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 977-985	2.8	76
5	Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 3773-85	3.4	76
4	Measurement of activity coefficients at infinite dilution in 1-hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 1144-1150	2.9	88
3	Thermodynamic Properties of Mixtures Containing Ionic Liquids: Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Propyl Boronic Acid-3-Alkylimidazolium Bromide and 1-Propenyl-3-alkylimidazolium Bromide Using Inverse Gas Chromatography. <i>Journal of Chemical</i>	2.8	57
2	Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. <i>Journal of Chromatography A</i> , 2006 , 1102, 256-67	4.5	124
1	Solubility of CO2 in branched alkanes in order to extend the PPR78 model (predictive 1978, Peng R obinson EOS with temperature-dependent kij calculated through a group contribution method) to such systems. <i>Fluid Phase Equilibria</i> , 2005 , 238, 157-168	2.5	70