
Seung-Won Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1243193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cholesteric liquid crystal smart window with a low operating voltage. Dyes and Pigments, 2022, 197, 109843.	3.7	31
2	Liquid-crystal-based floating-electrode-free coplanar waveguide phase shifter with an additional liquid-crystal layer for 28-GHz applications. Journal Physics D: Applied Physics, 2022, 55, 095106.	2.8	6
3	Optical see-through head-mounted display including transmittance-variable display for high visibility. Journal of Information Display, 2022, 23, 121-127.	4.0	4
4	A simulation of diffractive liquid crystal smart window for privacy application. Scientific Reports, 2022, 12, .	3.3	6
5	Measuring the five elastic constants of a nematic liquid crystal elastomer. Liquid Crystals, 2021, 48, 511-520.	2.2	9
6	Formation of a fine polymer structure on a plastic substrate through phase separation of a liquid crystal mixture. Journal of Information Display, 2021, 22, 31-38.	4.0	1
7	Self-Regulation of Infrared Using a Liquid Crystal Mixture Doped with Push–Pull Azobenzene for Energy-Saving Smart Windows. ACS Applied Materials & Interfaces, 2021, 13, 5028-5033.	8.0	36
8	A Switchable Cholesteric Phase Grating with a Low Operating Voltage. Crystals, 2021, 11, 100.	2.2	3
9	Filtering of yellow light in a liquid-crystal light shutter for higher color contrast and reduced glare. Journal of Molecular Liquids, 2021, 327, 114846.	4.9	3
10	Broadband tunable polarization rotator based on the waveguiding effect of liquid crystals. Journal Physics D: Applied Physics, 2021, 54, 355108.	2.8	3
11	16.1: Invited Paper: Selfâ€Regulating Liquid Crystal Windows for Energy Saving. Digest of Technical Papers SID International Symposium, 2021, 52, 211-214.	0.3	1
12	Flexible, broadband, super-reflective infrared reflector based on cholesteric liquid crystal polymer. Solar Energy Materials and Solar Cells, 2021, 230, 111137.	6.2	12
13	Smart Window Based on Angular-Selective Absorption of Solar Radiation with Guest–Host Liquid Crystals. Crystals, 2021, 11, 131.	2.2	10
14	Liquid crystal cell asymmetrically anchored for high transmittance and triggered with a vertical field for fast switching. Optics Express, 2020, 28, 20553.	3.4	7
15	Optimization of dye mixing for achromatic transmittance control with a dye-doped cholesteric liquid crystal cell. Dyes and Pigments, 2019, 160, 172-176.	3.7	4
16	Formation of polymer structure by thermally-induced phase separation for a dye-doped liquid crystal light shutter. Dyes and Pigments, 2019, 163, 749-753.	3.7	11
17	Parameter Space Design of a Guest-Host Liquid Crystal Device for Transmittance Control. Crystals, 2019, 9, 63.	2.2	9
18	Tristate switching of a liquid-crystal cell among initial transparent, haze-free dark, and high-haze dark states. Journal of Molecular Liquids, 2019, 281, 81-85.	4.9	26

SEUNG-WON OH

#	Article	IF	CITATIONS
19	Design of an achromatic wide-view circular polarizer using normal dispersion films. Journal of Information Display, 2019, 20, 25-30.	4.0	9
20	Independent control of haze and total transmittance with a dye-doped liquid crystal phase-grating device. Applied Optics, 2019, 58, 4315.	1.8	8
21	Formation of polymer structure by thermally-induced phase separation in a dye-doped liquid crystal cell. , 2019, , .		0
22	Optical and Thermal Switching of Liquid Crystals for Self‧hading Windows. Advanced Sustainable Systems, 2018, 2, 1700164.	5.3	35
23	Fabrication of an initially-focal-conic cholesteric liquid crystal cell without polymer stabilization. Displays, 2018, 52, 55-58.	3.7	19
24	Ion-doped liquid-crystal cell with low opaque-state specular transmittance based on electro-hydrodynamic effect. Dyes and Pigments, 2018, 150, 16-20.	3.7	34
25	Thermal control of transmission property by phase transition in cholesteric liquid crystals. Journal of Materials Chemistry C, 2018, 6, 6520-6525.	5.5	31
26	Control of Transmittance by Thermally Induced Phase Transition in Guest–Host Liquid Crystals. Advanced Sustainable Systems, 2018, 2, 1800066.	5.3	19
27	Enhancement of absorption and haze with hybrid anchoring of dye-doped cholesteric liquid crystals. Optics Express, 2018, 26, 14259.	3.4	14
28	Self-shading by optical or thermal control of transmittance with liquid crystals doped with push-pull azobenzene. Solar Energy Materials and Solar Cells, 2018, 183, 146-150.	6.2	26
29	43â€4: Selfâ€Shading with Optically―and Thermallyâ€Switchable Liquid Crystals. Digest of Technical Papers SID International Symposium, 2018, 49, 554-556.	0.3	2
30	Smart window using a thermally and optically switchable liquid crystal cell. , 2018, , .		0
31	Transmittance control of a liquid crystal device using a dye mixture. , 2018, , .		0
32	27â€3 2â€Ð Confinement of LCs with Virtual Walls for a Fast Response LCD. Digest of Technical Papers SID International Symposium, 2017, 48, 385-388.	0.3	9
33	Optical and electrical switching of cholesteric liquid crystals containing azo dye. RSC Advances, 2017, 7, 19497-19501.	3.6	58
34	Cholesteric liquid crystal cell with the focal-conic initial state. , 2017, , .		0
35	Bistable switching between homeotropic and focal-conic states in an ion-doped chiral nematic liquid crystal cell. Optics Express, 2017, 25, 29180.	3.4	26
36	Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene. Optics Express, 2016, 24, 26575.	3.4	13

SEUNG-WON OH

#	Article	IF	CITATIONS
37	P-142: Double-Layered Light Shutter using Polymer Dispersed Liquid Crystals and Dye-Doped Cholesteric Liquid Crystals. Digest of Technical Papers SID International Symposium, 2016, 47, 1653-1655.	0.3	0
38	Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film. Dyes and Pigments, 2016, 134, 36-40.	3.7	92
39	P-130: Investigation on Image Flicker in an FFS-LCD Panel: Dependence on Electrode Spacing. Digest of Technical Papers SID International Symposium, 2016, 47, 1607-1609.	0.3	1
40	Elimination of image flicker in a fringe-field switching liquid crystal cell. , 2016, , .		0
41	Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls. Scientific Reports, 2016, 6, 27936.	3.3	39
42	Electro-Optical Performance of a Zero Pre-Tilt Liquid Crystal Cell Fabricated by Using the Field-Induced UV-Alignment Method. Journal of Display Technology, 2016, 12, 40-44.	1.2	5
43	Dependence of image flicker on dielectric anisotropy of liquid crystal in a fringe field switching liquid crystal cell. Japanese Journal of Applied Physics, 2016, 55, 094101.	1.5	4
44	Field induced UV-alignment method for a zero pre-tilt liquid crystal cell. Proceedings of SPIE, 2016, , .	0.8	0
45	Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure. Optics Express, 2016, 24, 15987.	3.4	22
46	Surface flattening of a polyimide layer in a liquid crystal cell fabricated by using a field-induced UV-alignment method. RSC Advances, 2016, 6, 55282-55285.	3.6	3
47	Four-Domain Electrode Structure for Wide Viewing Angle in a Fringe-Field-Switching Liquid Crystal Display. Journal of Display Technology, 2016, 12, 667-672.	1.2	12
48	Effect of electrode spacing on image flicker in fringe-field-switching liquid crystal display. Liquid Crystals, 2016, 43, 972-979.	2.2	16
49	67.2: Fabrication of A Zeroâ€pretilt Liquid Crystal Cell using UVâ€curable Polymer. Digest of Technical Papers SID International Symposium, 2015, 46, 994-996.	0.3	Ο
50	Optical compensation for elimination of off-axis light leakage in a liquid crystal display. , 2015, , .		0
51	Elimination of off-axis light leakage in a homogeneously aligned liquid crystal cell. Proceedings of SPIE, 2015, , .	0.8	Ο
52	Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer. Optics Express, 2015, 23, 1044.	3.4	30
53	Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave. Optics Express, 2015, 23, 24013.	3.4	24
54	Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display. Journal of Information Display, 2015, 16, 1-10.	4.0	39

SEUNG-WON OH

#	Article	IF	CITATIONS
55	Fast bistable switching of a chiral-nematic liquid crystal cell induced by applying an in-plane electric field. , 2015, , .		0
56	Optical Compensation for Elimination of Off-Axis Light Leakage in a Homogeneously-Aligned Liquid Crystal Cell. Molecular Crystals and Liquid Crystals, 2015, 613, 181-189.	0.9	5
57	Fast bistable switching of a cholesteric liquid crystal device induced by application of an in-plane electric field. Applied Optics, 2014, 53, 7321.	2.1	10
58	Elimination of light leakage over the entire viewing cone in a homogeneously-aligned liquid crystal cell. Optics Express, 2014, 22, 5808.	3.4	35
59	Pâ€129: Fast Switching of a Verticallyâ€Aligned Liquid Crystal Cell by Forming Polymer Networks at a Low Temperature. Digest of Technical Papers SID International Symposium, 2014, 45, 1473-1475.	0.3	0
60	Achromatic wide-view circular polarizers for a high-transmittance vertically-aligned liquid crystal cell. Optics Letters, 2014, 39, 4683.	3.3	14
61	Fast Switching of Vertically Aligned Liquid Crystals by Low-Temperature Curing of the Polymer Structure. Journal of the Optical Society of Korea, 2014, 18, 395-400.	0.6	4
62	Dual mode operation of a chiral-nematic liquid crystal cell using three-terminal electrodes. , 2013, , .		0
63	Achromatic optical compensation using dispersion of uniaxial films for elimination of off-axis light leakage in a liquid crystal cell. Applied Optics, 2013, 52, 7785.	1.8	12
64	Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure. Optics Express, 2012, 20, 24376.	3.4	21