List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/124291/publications.pdf Version: 2024-02-01

CHENC GU

#	Article	IF	CITATIONS
1	Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasiâ€Equivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762.	7.8	381
2	Radical Covalent Organic Frameworks: A General Strategy to Immobilize Openâ€Accessible Polyradicals for Highâ€Performance Capacitive Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 6814-6818.	7.2	342
3	Design and control of gas diffusion process in a nanoporous soft crystal. Science, 2019, 363, 387-391.	6.0	332
4	Controlled Synthesis of Conjugated Microporous Polymer Films: Versatile Platforms for Highly Sensitive and Labelâ€Free Chemo―and Biosensing. Angewandte Chemie - International Edition, 2014, 53, 4850-4855.	7.2	258
5	High Yields of Singlet Excitons in Organic Electroluminescence through Two Paths of Cold and Hot Excitons. Advanced Optical Materials, 2014, 2, 510-515.	3.6	216
6	Electrochemical Route to Fabricate Film‣ike Conjugated Microporous Polymers and Application for Organic Electronics. Advanced Materials, 2013, 25, 3443-3448.	11.1	212
7	π onjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angewandte Chemie - International Edition, 2015, 54, 13594-13598.	7.2	182
8	A Molecular Glass for Deepâ€Blue Organic Lightâ€Emitting Diodes Comprising a 9,9′â€Spirobifluorene Core and Peripheral Carbazole Groups. Advanced Functional Materials, 2007, 17, 2869-2877.	7.8	179
9	A highly soluble, crystalline covalent organic framework compatible with device implementation. Chemical Science, 2019, 10, 1023-1028.	3.7	173
10	Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity. Angewandte Chemie - International Edition, 2015, 54, 11540-11544.	7.2	140
11	Electropolymerized Conjugated Microporous Poly(zincâ€porphyrin) Films as Potential Electrode Materials in Supercapacitors. Advanced Energy Materials, 2015, 5, 1402175.	10.2	128
12	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie - International Edition, 2016, 55, 3049-3053.	7.2	121
13	Achieving High Efficiency of PTB7â€Based Polymer Solar Cells via Integrated Optimization of Both Anode and Cathode Interlayers. Advanced Energy Materials, 2014, 4, 1301771.	10.2	102
14	Luminescent Porous Polymers Based on Aggregationâ€Induced Mechanism: Design, Synthesis and Functions. Small, 2016, 12, 6513-6527.	5.2	96
15	The Origin of the Improved Efficiency and Stability of Triphenylamineâ€Substituted Anthracene Derivatives for OLEDs: A Theoretical Investigation. ChemPhysChem, 2008, 9, 2601-2609.	1.0	93
16	Crystalline and Stable Benzofuran-Linked Covalent Organic Frameworks from Irreversible Cascade Reactions. Journal of the American Chemical Society, 2020, 142, 13316-13321.	6.6	85
17	Colorâ€stable White Electroluminescence Based on a Crossâ€linked Network Film Prepared by Electrochemical Copolymerization. Advanced Materials, 2010, 22, 2702-2705.	11.1	78
18	Study of β phase and Chains Aggregation Degrees in Poly(9,9-dioctylfluorene) (PFO) Solution. Journal of Physical Chemistry C, 2012, 116, 7993-7999.	1.5	75

#	Article	IF	CITATIONS
19	Mechanochromic and thermochromic fluorescent properties ofÂcyanostilbene derivatives. Dyes and Pigments, 2013, 98, 486-492.	2.0	74
20	Multilayer Polymer Stacking by In Situ Electrochemical Polymerization for Color‣table White Electroluminescence. Advanced Materials, 2011, 23, 527-530.	11.1	68
21	Highly-efficient solution-processed OLEDs based on new bipolar emitters. Chemical Communications, 2010, 46, 3923.	2.2	67
22	In Situ Electrochemical Deposition and Doping of C ₆₀ Films Applied to Highâ€₽erformance Inverted Organic Photovoltaics. Advanced Materials, 2012, 24, 5727-5731.	11.1	67
23	Highly Efficient Nondoped Nearâ€Ultraviolet Electroluminescence with an External Quantum Efficiency Greater Than 6.5% Based on a Carbazole–Triazole Hybrid Molecule with High and Balanced Charge Mobility. Advanced Optical Materials, 2017, 5, 1700747.	3.6	65
24	Large Titanium-Oxo Clusters as Precursors to Synthesize the Single Crystals of Ti-MOFs. , 2021, 3, 64-68.		62
25	Crossâ€Linked Multifunctional Conjugated Polymers Prepared by In Situ Electrochemical Deposition for a Highlyâ€Efficient Blueâ€Emitting and Electronâ€Transport Layer. Advanced Materials, 2012, 24, 2413-2417.	11.1	57
26	Electrocleavage Synthesis of Solution-Processed, Imine-Linked, and Crystalline Covalent Organic Framework Thin Films. Journal of the American Chemical Society, 2022, 144, 8961-8968.	6.6	48
27	Aromatic S-Heterocycle and Fluorene Derivatives as Solution-Processed Blue Fluorescent Emitters: Structure–Property Relationships for Different Sulfur Oxidation States. Journal of Physical Chemistry C, 2013, 117, 14189-14196.	1.5	47
28	A solution-processable deep red molecular emitter for non-doped organic red-light-emitting diodes. Dyes and Pigments, 2011, 91, 356-363.	2.0	44
29	Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. Advanced Energy Materials, 2022, 12, 2100321.	10.2	41
30	Hypercrosslinked Polymer Gels as a Synthetic Hybridization Platform for Designing Versatile Molecular Separators. Journal of the American Chemical Society, 2022, 144, 6861-6870.	6.6	40
31	Highly Efficient and Fully Solutionâ€Processed White Electroluminescence Based on Fluorescent Small Molecules and a Polar Conjugated Polymer as the Electronâ€injection Material. Advanced Functional Materials, 2012, 22, 1092-1097.	7.8	39
32	Electropolymerization of Molecularâ€ s ieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 8768-8772.	7.2	39
33	A new kind of peripheral carbazole substituted ruthenium(II) complexes for electrochemical deposition organic light-emitting diodes. Journal of Materials Chemistry, 2009, 19, 3941.	6.7	38
34	Cascade exciton-pumping engines with manipulated speed and efficiency in light-harvesting porous Ĩ€-network films. Scientific Reports, 2015, 5, 8867.	1.6	37
35	Efficient Organic Light-Emitting Transistors Based on High-Quality Ambipolar Single Crystals. ACS Applied Materials & Interfaces, 2020, 12, 43976-43983.	4.0	36
36	High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes. Journal of Power Sources, 2016, 332, 413-419.	4.0	35

#	Article	IF	CITATIONS
37	Synthesis and Electrochemical Properties of Peripheral Carbazole Functional Ter(9,9-spirobifluorene)s. Journal of Organic Chemistry, 2008, 73, 4212-4218.	1.7	33
38	Electrochemical polymerization films for highly efficient electroluminescent devices and RGB color pixel. Electrochemistry Communications, 2010, 12, 553-556.	2.3	33
39	Almost completely dedoped electrochemically deposited luminescent films exhibiting excellent LED performance. Electrochimica Acta, 2009, 54, 7006-7011.	2.6	32
40	Electroactive Selfâ€Assembled Monolayers for Enhanced Efficiency and Stability of Electropolymerized Luminescent Films and Devices. Advanced Functional Materials, 2011, 21, 2896-2900.	7.8	30
41	Electrochemical polymerization: an emerging approach for fabricating high-quality luminescent films and super-resolution OLEDs. Journal of Materials Chemistry C, 2020, 8, 5310-5320.	2.7	30
42	Electrochemical Synthesis, Deposition, and Doping of Polycyclic Aromatic Hydrocarbon Films. Journal of the American Chemical Society, 2021, 143, 2682-2687.	6.6	30
43	Thiophene Disubstituted Benzothiadiazole Derivatives: An Effective Planarization Strategy Toward Deep-Red to Near-Infrared (NIR) Organic Light-Emitting Diodes. Frontiers in Chemistry, 2019, 7, 276.	1.8	29
44	Fully solution-processed and multilayer blue organic light-emitting diodes based on efficient small molecule emissive layer and intergrated interlayer optimization. Organic Electronics, 2015, 27, 35-40.	1.4	25
45	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie, 2016, 128, 3101-3105.	1.6	25
46	Design of Photothermal Covalent Organic Frameworks by Radical Immobilization. CCS Chemistry, 2022, 4, 2842-2853.	4.6	25
47	Phenothiazine-based covalent organic frameworks with low exciton binding energies for photocatalysis. Chemical Science, 2022, 13, 8679-8685.	3.7	25
48	A triphenylamine-capped solution-processable wholly aromatic organic molecule with electrochemical stability and its potential application in photovoltaic devices. New Journal of Chemistry, 2013, 37, 2440.	1.4	23
49	Suppressing charge trapping effect in ambipolar conducting polymer with vertically standing graphene as the composite electrode for high performance supercapacitor. Energy Storage Materials, 2020, 29, 281-286.	9.5	23
50	Electrochemical Synthesis of Transparent, Amorphous, C ₆₀ â€Rich, Photoactive, and Lowâ€Doped Film with an Interconnected Structure. Small, 2013, 9, 2064-2068.	5.2	21
51	Electropolymerization of Molecularâ€Sieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie, 2019, 131, 8860-8864.	1.6	20
52	Lamellar Organic Light-Emitting Crystals Exhibiting Spectral Gain and 3.6% External Quantum Efficiency in Transistors. , 2021, 3, 428-432.		20
53	Insight into the Efficiency and Stability of All-Polymer Solar Cells Based on Two 2D-Conjugated Polymer Donors: Achieving High Fill Factor of 78%. ACS Applied Materials & Interfaces, 2019, 11, 43433-43440.	4.0	19
54	Chemistry and materials based on 5,5′-bibenzo[c][1,2,5]thiadiazole. Chemical Communications, 2013, 49, 5730.	2.2	18

#	Article	IF	CITATIONS
55	Design of Persistent and Stable Porous Radical Polymers by Electronic Isolation Strategy. Angewandte Chemie - International Edition, 2021, 60, 24424-24429.	7.2	18
56	Functionality of peripheral side chain for enhanced performance of conjugated polymer—F8BT as an example. Journal of Polymer Science Part A, 2011, 49, 4549-4555.	2.5	16
57	Cross-linked luminescent films via electropolymerization of multifunctional precursors for highly efficient electroluminescence. Polymer Chemistry, 2013, 4, 2090.	1.9	16
58	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
59	Simultaneous enhancement of the carrier mobility and luminous efficiency through thermal annealing a molecular glass material and device. Journal of Materials Chemistry, 2012, 22, 21502.	6.7	13
60	Synthesis and characterization of new polyfluorene derivatives: using phenanthro[9,10-d]imidazole group as a building block for deep blue light-emitting polymer. Polymer Bulletin, 2012, 69, 273-289.	1.7	13
61	Dihydrophenazine linked porous organic polymers for high capacitance and energy density pseudocapacitive electrodes and devices. Journal of Materials Chemistry A, 2021, 9, 4984-4989.	5.2	13
62	Controllable Optical, Electrical, and Morphologic Properties of 3,4â€Ethylenedioxythiophene Based Electrocopolymerization Films. Macromolecular Rapid Communications, 2011, 32, 1014-1019.	2.0	12
63	Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction. Chemical Research in Chinese Universities, 2022, 38, 433-439.	1.3	12
64	In situ synthesis of electroactive conjugated microporous fullerene films capable of supercapacitive energy storage. Chemical Communications, 2017, 53, 9602-9605.	2.2	10
65	Construction of unimpeded proton-conducting pathways in solution-processed nanoporous polymer membranes. Materials Horizons, 2021, 8, 3088-3095.	6.4	9
66	Characterization of complicated electropolymerization using UV–vis spectroelectrochemistry and an electrochemical quartz-crystal microbalance with dissipation: A case study of tricarbazole derivatives. Electrochemistry Communications, 2021, 123, 106913.	2.3	9
67	Organic single crystals of cyano-substituted p-phenylene vinylene derivatives as transistors with low surface trap density. Chemical Communications, 2020, 56, 13776-13779.	2.2	8
68	Highly efficient photocatalytic hydrogen evolution based on conjugated molecular micro/nano-crystalline sheets. Journal of Materials Chemistry A, 2021, 9, 2120-2125.	5.2	8
69	Design of Persistent and Stable Porous Radical Polymers by Electronical Isolation Strategy. Angewandte Chemie, 2021, 133, 24629.	1.6	8
70	Mixed bipolar fluorescent small molecules for solution processable white light-emitting devices with excellent efficiency roll-off. Journal of Materials Chemistry C, 2013, 1, 7175.	2.7	5
71	Accurately Stoichiometric Regulating Oxidation States in Hole Transporting Material to Enhance the Hole Mobility of Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000127.	3.1	5
72	Triazine and Porphyrin-Based Cross-Linked Conjugated Polymers: Protonation-Assisted Dissolution and Thermoelectric Properties. CCS Chemistry, 0, , 2688-2695.	4.6	5

#	Article	IF	CITATIONS
73	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie, 2022, 134, .	1.6	3
74	A highly sensitive detecting system to precisely evaluate emission spectra and quantum efficiency of organic crystal light-emitting transistors. Optics Letters, 2021, 46, 3296-3299.	1.7	1