
Yuguang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1242842/publications.pdf Version: 2024-02-01

ΥΠΟΠΑΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Modulated integrin signaling receptors of stem cells via ultra-soft hydrogel for promoting angiogenesis. Composites Part B: Engineering, 2022, 234, 109747.	12.0	12
2	Transumbilical Single-incision Laparoscopic Surgery for Harvesting Rib and Costal Cartilage. Plastic and Reconstructive Surgery - Global Open, 2022, 10, e4161.	0.6	2
3	Focusing on Mechanoregulation Axis in Fibrosis: Sensing, Transduction and Effecting. Frontiers in Molecular Biosciences, 2022, 9, 804680.	3.5	7
4	Advanced Biomaterials for Regulating Polarization of Macrophages in Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	68
5	Charge and receptor functional injectable hydrogels as cytokine-releasing reservoirs for wound healing. Chemical Engineering Journal, 2022, 450, 137880.	12.7	9
6	Multifunctional integrally-medicalized hydrogel system with internal synergy for efficient tissue regeneration. Chemical Engineering Journal, 2021, 406, 126839.	12.7	27
7	Conditioned medium-electrospun fiber biomaterials for skin regeneration. Bioactive Materials, 2021, 6, 361-374.	15.6	43
8	Programmable immune activating electrospun fibers for skin regeneration. Bioactive Materials, 2021, 6, 3218-3230.	15.6	42
9	Progress of laser and light treatments for lower eyelid rejuvenation. Chinese Journal of Plastic and Reconstructive Surgery, 2021, 3, 218-223.	0.3	1
10	A Novel Way for Upper Eyelid Rejuvenation by Combination of Local Fat-Fascia-Muscle Flap Repositioning for Middle-Aged Asian Women. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2020, 73, 1565-1572.	1.0	3
11	Nano-in-micro electronspun membrane: merging nanocarriers and microfibrous scaffold for long-term scar inhibition. Chemical Engineering Journal, 2020, 397, 125405.	12.7	11
12	A Biomimetic 3Dâ€Selfâ€Forming Approach for Microvascular Scaffolds. Advanced Science, 2020, 7, 1903553.	11.2	46
13	Biomaterial Scaffolds for Improving Vascularization During Skin Flap Regeneration. Chinese Journal of Plastic and Reconstructive Surgery, 2020, 2, 109-119.	0.3	5
14	Adhesive nanoparticles with inflammation regulation for promoting skin flap regeneration. Journal of Controlled Release, 2019, 297, 91-101.	9.9	37
15	Selfâ€Healing and Injectable Hydrogel for Matching Skin Flap Regeneration. Advanced Science, 2019, 6, 1801555.	11.2	140
16	Adjustable hardness of hydrogel for promoting vascularization and maintaining stemness of stem cells in skin flap regeneration. Applied Materials Today, 2018, 13, 54-63.	4.3	42
17	Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017, 49, 66-77.	8.3	244
18	Evaluation of lower blepharoplasty treated with the SmartLipo 1064-nm system and its clinical implications: A retrospective review Journal of Cosmetic and Laser Therapy, 2016, 18, 376-380	0.9	9

YUGUANG ZHANG

#	Article	IF	CITATIONS
19	Two-dimensional electrospun nanofibrous membranes for promoting random skin flap survival. RSC Advances, 2016, 6, 9360-9369.	3.6	21
20	Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials, 2016, 83, 169-181.	11.4	122
21	Rg3-loaded biodegradable composite electrospun fibers for long-term inhibition of hypertrophic scarring. Journal of Controlled Release, 2015, 213, e118.	9.9	1
22	A facilely fabricated in vivo hypertrophic scar model through continuous gradient elastic tension. RSC Advances, 2015, 5, 107430-107444.	3.6	2
23	Serial reconstruction of anophthalmic orbits with â€~bag-shaped' flaps. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2015, 68, 205-212.	1.0	4
24	Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin. Colloids and Surfaces B: Biointerfaces, 2014, 115, 61-70.	5.0	61
25	bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. Journal of Materials Chemistry B, 2014, 2, 3636-3645.	5.8	102
26	In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes. Acta Biomaterialia, 2013, 9, 9461-9473.	8.3	34
27	Electrospun Ginsenoside Rg3/poly(lactic-co-glycolic acid) fibers coated with hyaluronic acid for repairing and inhibiting hypertrophic scars. Journal of Materials Chemistry B, 2013, 1, 4428.	5.8	31
28	Electrospun Poly(L-Lactide) Fiber with Ginsenoside Rg3 for Inhibiting Scar Hyperplasia of Skin. PLoS ONE, 2013, 8, e68771.	2.5	41
29	Preparation of hydrophilic poly(l-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer, 2012, 53, 2298-2305.	3.8	85